EFFICIENT UNCERTAINTY QUANTIFICATION WITH GRADIENT-ENHANCED KRIGING: APPLICATIONS IN FSI
暂无分享,去创建一个
Hester Bijl | Richard P. Dwight | Alexander van Zuijlen | Cv Clemens Verhoosel | T. P. Scholcz | Jouke H. S. de Baar | H. Bijl | R. Dwight | J. D. Baar | A. V. Zuijlen | T. Scholcz
[1] Noel A Cressie,et al. Statistics for Spatial Data. , 1992 .
[2] N. Metropolis,et al. The Monte Carlo method. , 1949 .
[3] Timothy G. Trucano,et al. Verification and validation. , 2005 .
[4] Cv Clemens Verhoosel,et al. Uncertainty and Reliability Analysis of Fluid-Structure Stability Boundaries , 2009 .
[5] Roger Woodard,et al. Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.
[6] P. Sagaut,et al. Building Efficient Response Surfaces of Aerodynamic Functions with Kriging and Cokriging , 2008 .
[7] T. J. Mitchell,et al. Bayesian design and analysis of computer experiments: Use of derivatives in surface prediction , 1993 .
[8] Zhonghua Han,et al. Efficient Uncertainty Quantification using Gradient-Enhanced Kriging , 2009 .
[9] A. O'Hagan,et al. Bayesian calibration of computer models , 2001 .
[10] Patrick J. Roache,et al. Verification and Validation in Computational Science and Engineering , 1998 .
[11] L. M. Berliner,et al. A Bayesian tutorial for data assimilation , 2007 .
[12] G. Matheron. Principles of geostatistics , 1963 .
[13] N. Cressie. The origins of kriging , 1990 .
[14] J. Alonso,et al. Using gradients to construct cokriging approximation models for high-dimensional design optimization problems , 2002 .
[15] Kok-Kwang Phoon,et al. Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes , 2001 .