An f(R,T) gravity based FLRW model and o

[1]  A. Banerjee,et al.  Charged quark stars in f(R,T) gravity , 2022, Chinese Physics C.

[2]  A. Banerjee,et al.  Quark stars in f(R,T) gravity with an interacting quark equation of state , 2022, Physics of the Dark Universe.

[3]  M. Ivanov Cosmological constraints from the power spectrum of eBOSS emission line galaxies , 2021, Physical Review D.

[4]  A. Pradhan,et al.  Evaluation of cosmological models in $f(R, T)$ gravity in different dark energy scenario , 2021, 2106.03177.

[5]  A. Chudaykin,et al.  Constraints on the curvature of the Universe and dynamical dark energy from the full-shape and BAO data , 2020, 2009.10106.

[6]  R. B. Barreiro,et al.  Planck2018 results , 2020, Astronomy & Astrophysics.

[7]  B. Sherwin,et al.  Determining the Hubble constant without the sound horizon: Measurements from galaxy surveys , 2020, Physical Review D.

[8]  T. Harko,et al.  Comment on "Reexamining $f\left(R,T\right)$ gravity", Phys. Rev. D 100, 064059 (2019) , 2020, 2003.08107.

[9]  M. Zaldarriaga,et al.  Combining full-shape and BAO analyses of galaxy power spectra: a 1.6% CMB-independent constraint on H0 , 2020, Journal of Cosmology and Astroparticle Physics.

[10]  F. Beutler,et al.  Efficient cosmological analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure , 2019, Journal of Cosmology and Astroparticle Physics.

[11]  A. Yadav,et al.  Bulk viscous Bianchi-V cosmological model within the formalism of $f(R,T)=f_{1}(R)+f_{2}(R)f_{3}(T) $ gravity , 2019, Astrophysics and Space Science.

[12]  A. Yadav,et al.  Viability of Bianchi type V universe in f(R,T) = f1(R) + f2(R)f3(T) gravity , 2019, International Journal of Geometric Methods in Modern Physics.

[13]  A. Yadav,et al.  Bulk viscous Bianchi-I embedded cosmological model in f(R,T) = f1(R) + f2(R)f3(T) gravity , 2019, Modern Physics Letters A.

[14]  E. Carlson,et al.  Reexamining f(R,T) gravity , 2019, Physical Review D.

[15]  E. Carlson,et al.  Limits on f(R,T) gravity from Earth’s atmosphere , 2019, Physical Review D.

[16]  N. E. Sommer,et al.  First cosmological results using Type Ia supernovae from the Dark Energy Survey: measurement of the Hubble constant , 2018, Monthly Notices of the Royal Astronomical Society.

[17]  A. Yadav,et al.  Non-minimal matter-geometry coupling in Bianchi I space-time , 2018, Results in Physics.

[18]  M. Malheiro,et al.  Stellar equilibrium configurations of white dwarfs in the f(R, T) gravity , 2017, The European Physical Journal C.

[19]  V. Oikonomou,et al.  Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution , 2017, 1705.11098.

[20]  R. Nichol,et al.  Age-dating luminous red galaxies observed with the Southern African Large Telescope , 2016, 1702.00418.

[21]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[22]  Daniel Thomas,et al.  A 6% measurement of the Hubble parameter at z∼0.45: direct evidence of the epoch of cosmic re-acceleration , 2016, 1601.01701.

[23]  Michele Moresco Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z ∼ 2 , 2015, 1503.01116.

[24]  M. Shamir Bianchi type-I cosmology in f(R, T) gravity , 2014, 1506.08699.

[25]  Adam D. Myers,et al.  Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars , 2014, 1404.1801.

[26]  Adam D. Myers,et al.  Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon Acoustic Oscillations , 2013, 1311.1767.

[27]  G. C. Samanta,et al.  Higher Dimensional Cosmological Models Filled with Perfect Fluid in f(R,T) Theory of Gravity , 2013 .

[28]  G. C. Samanta Universe Filled with Dark Energy (DE) from a Wet Dark Fluid (WDF) in f(R,T) Gravity , 2013 .

[29]  A. Myers,et al.  Baryon Acoustic Oscillations in the Ly-\alpha\ forest of BOSS quasars , 2012, 1211.2616.

[30]  Yun Wang,et al.  Modelling the anisotropic two-point galaxy correlation function on small scales and single-probe measurements of H(z), DA(z) and f(z)σ8(z) from the Sloan Digital Sky Survey DR7 luminous red galaxies , 2012, 1209.0210.

[31]  Siqi Liu,et al.  Four new observational H(z) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven , 2012, 1207.4541.

[32]  K. Adhav LRS Bianchi type-I cosmological model in f(R,T) theory of gravity , 2012 .

[33]  S. Capozziello,et al.  Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests , 2012, 1205.3421.

[34]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: joint measurements of the expansion and growth history at z < 1 , 2012, 1204.3674.

[35]  B. Garilli,et al.  Improved constraints on the expansion rate of the Universe up to z ∼ 1.1 from the spectroscopic evolution of cosmic chronometers , 2012, 1201.3609.

[36]  S. Deustua,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE , 2011, 1105.3470.

[37]  Tiberiu Harko,et al.  f(R, T) Gravity , 2011, Extensions of f(R) Gravity.

[38]  J. Yokoyama,et al.  f(R) Gravity and its Cosmological Implications , 2011, 1101.0716.

[39]  Sergei D. Odintsov,et al.  Unified cosmic history in modified gravity: From F ( R ) theory to Lorentz non-invariant models , 2010, 1011.0544.

[40]  Miao Li,et al.  Dark Energy , 2011, Dialogue: A Journal of Mormon Thought.

[41]  L. Verde,et al.  Cosmic chronometers: constraining the equation of state of dark energy. I: H(z) measurements , 2009, 0907.3149.

[42]  E. Gaztañaga,et al.  Clustering of luminous red galaxies – IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z) , 2008, 0807.3551.

[43]  T. Sotiriou,et al.  f(R) Theories Of Gravity , 2008, 0805.1726.

[44]  J. Frieman,et al.  Dark Energy and the Accelerating Universe , 2008, 0803.0982.

[45]  S. Capozziello,et al.  Extended theories of gravity and their cosmological and astrophysical applications , 2007, 0706.1146.

[46]  E. Copeland,et al.  Dynamics of dark energy , 2006, hep-th/0603057.

[47]  S. D. Odintsov,et al.  INTRODUCTION TO MODIFIED GRAVITY AND GRAVITATIONAL ALTERNATIVE FOR DARK ENERGY , 2006, hep-th/0601213.

[48]  S. Nojiri,et al.  Dark energy problem : from phantom theory to modified Gauss-Bonnet gravity , 2005, hep-th/0510183.

[49]  J. Prieto,et al.  Hubble Space Telescope and Ground-based Observations of Type Ia Supernovae at Redshift 0.5: Cosmological Implications , 2005, astro-ph/0510155.

[50]  Nikolay,et al.  The Fourth Data Release of the Sloan Digital Sky Survey , 2005, The Astrophysical Journal Supplement Series.

[51]  Yuan-zhong Zhang,et al.  Probing the curvature and dark energy , 2005, astro-ph/0502262.

[52]  L. Verde,et al.  Constraints on the redshift dependence of the dark energy potential , 2004, astro-ph/0412269.

[53]  R. Nichol,et al.  Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy , 2004, astro-ph/0407372.

[54]  S. Allen,et al.  Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters , 2004, astro-ph/0405340.

[55]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[56]  S. Carroll,et al.  Is Cosmic Speed-Up Due to New Gravitational Physics? , 2003, astro-ph/0306438.

[57]  G. Ellis,et al.  Multiverses and physical cosmology , 2003, astro-ph/0305292.

[58]  Peter Garnavich,et al.  Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.

[59]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[60]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[61]  P. Peebles,et al.  The Cosmological Constant and Dark Energy , 2002, astro-ph/0207347.

[62]  A. Starobinsky,et al.  Statefinder—A new geometrical diagnostic of dark energy , 2002, astro-ph/0201498.

[63]  V. B. Johri Genesis of cosmological tracker fields , 2000, astro-ph/0005608.

[64]  V. V. Hristov,et al.  MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10'-5° , 2000, astro-ph/0005123.

[65]  A. Melchiorri,et al.  A flat Universe from high-resolution maps of the cosmic microwave background radiation , 2000, Nature.

[66]  P. Steinhardt,et al.  Cosmological tracking solutions , 1998, astro-ph/9812313.

[67]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[68]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[69]  R. Ellis,et al.  Discovery of a supernova explosion at half the age of the Universe , 1997, Nature.

[70]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XIV . Dark energy and modified gravity , 2016 .

[71]  R. Chaubey,et al.  A new class of Bianchi cosmological models in f(R,T) gravity , 2013 .

[72]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2011 .

[73]  Steven Weinberg,et al.  The Cosmological Constant Problem , 1989 .