On the local zeta functions and the b‐functions of certain hyperplane arrangements

Conjectures of Igusa for p-adic local zeta functions and of Denef and Loeser for topological local zeta functions assert that (the real part of) the poles of these local zeta functions are roots of the Bernstein–Sato polynomials (that is, the b -functions). We prove these conjectures for certain hyperplane arrangements, including the case of reduced hyperplane arrangements in three-dimensional affine space.

[1]  W. Veys,et al.  The monodromy conjecture for zeta functions associated to ideals in dimension two , 2009, 0910.2179.

[2]  Nero Budur,et al.  Bernstein–Sato polynomials of arbitrary varieties , 2006, Compositio Mathematica.

[3]  Jan Denef,et al.  Report on Igusa's local zeta function , 1991 .

[4]  P. Deligne Le formalisme des cycles évanescents , 1973 .

[5]  On Igusa zeta functions of monomial ideals , 2005, math/0509243.

[6]  Sergey Yuzvinsky,et al.  Cohomology of the brieskorn-orlik-solomon algebras , 1995 .

[7]  W. Veys On the Poles of Igusa's Local Zeta Function for Curves , 1990 .

[8]  W. Veys Poles of Igusa's local zeta function and monodromy , 1993 .

[9]  A. Lemahieu,et al.  Monodromy conjecture for nondegenerate surface singularities , 2011 .

[10]  Quasi-ordinary Power Series and Their Zeta Functions , 2003, math/0306249.

[11]  Masaki Kashiwara,et al.  B-functions and holonomic systems , 1976 .

[12]  Xiaowei Zhu,et al.  ON THE POLES OF p-ADIC COMPLEX POWERS AND THE b- FUNCTIONS OF PREHOMOGENEOUS VECTOR SPACES , 1990 .

[13]  Alexandru Dimca,et al.  Singularities and Topology of Hypersurfaces , 1992 .

[14]  Bernstein–Sato polynomials of hyperplane arrangements , 2006, math/0602527.

[15]  H. Esnault,et al.  Cohomology of local systems on the complement of hyperplanes , 1992 .

[16]  Marcus du Sautoy,et al.  AN INTRODUCTION TO THE THEORY OF LOCAL ZETA FUNCTIONS (AMS/IP Studies in Advanced Mathematics 14) , 2001 .

[17]  Daniel C. Cohen,et al.  On Milnor Fibrations of Arrangements , 1995 .

[18]  b-Functions and p-adic Integrals , 1988 .

[19]  A. Dimca Sheaves in Topology , 2004 .

[20]  Zach Teitler,et al.  A NOTE ON MUSTATA'S COMPUTATION OF MULTIPLIER IDEALS OF HYPERPLANE ARRANGEMENTS , 2006, math/0610303.

[21]  Zeta Functions and Monodromy for Surfaces that are General for a Toric Idealistic Cluster , 2008, 0802.2730.

[22]  bases for cohomology of local systems on hyperplane complements , 1994, alg-geom/9412009.

[23]  Robert Lazarsfeld,et al.  Jumping coefficients of multiplier ideals , 2003, math/0303002.

[24]  Enrique Artal Bartolo,et al.  Monodromy conjecture for some surface singularities , 2002 .

[25]  The Monodromy Conjecture for hyperplane arrangements , 2009, 0906.1991.

[26]  M. Saito,et al.  Jumping coefficients and spectrum of a hyperplane arrangement , 2009, 0903.3839.

[27]  F. Loeser Fonctions D'Igusa p-adiques et Polynomes de Berstein , 1988 .

[28]  J. Igusa,et al.  Complex powers and asymptotic expansions. II. , 1975 .

[29]  Michael J Falk,et al.  Arrangements and cohomology , 1997 .

[30]  B. Malgrange,et al.  Le polynome de Bernstein d’une singularite isolee , 1975 .

[31]  J. Denef,et al.  Caractristiques dEuler-Poincar, fonctions zta locales et modifications analytiques , 1992 .

[32]  H. Terao,et al.  Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors , 1994 .

[33]  Morihiko Saito Multiplier ideals, b-function, and spectrum of a hypersurface singularity , 2004 .

[34]  F. Loeser Fonctions d'Igusa p-adiques, polynômes de Bernstein, et polyèdres de Newton. , 1990 .

[35]  Jun-ichi Igusa,et al.  An Introduction to the Theory of Local Zeta Functions , 2007 .

[36]  B. Rodrigues On the Monodromy Conjecture for curves on normal surfaces , 2004, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  W. Veys Vanishing of principal value integrals on surfaces , 2006, math/0604221.

[38]  W. Veys Determination of the poles of the topological zeta function for curves , 1995 .

[39]  E. Hironaka,et al.  Topology of Algebraic Varieties and Singularities , 2011 .

[40]  Sergey Yuzvinsky,et al.  Cohomology of the Orlik–Solomon Algebras and Local Systems , 1998, Compositio Mathematica.

[41]  C. Procesi,et al.  Wonderful models of subspace arrangements , 1995 .

[42]  Masaki Kashiwara,et al.  Vanishing cycle sheaves and holonomic systems of differential equations , 1983 .

[43]  I. N. Bernshtein The analytic continuation of generalized functions with respect to a parameter , 1972 .

[44]  Mircea Mustata Multiplier ideals of hyperplane arrangements , 2004 .

[45]  A. Libgober Characteristic varieties of algebraic curves , 2001 .