Hierarchical spline spaces: quasi-interpolants and local approximation estimates
暂无分享,去创建一个
[1] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[2] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[3] Paul Sablonnière,et al. Recent Progress on Univariate and Multivariate Polynomial and Spline Quasi-interpolants , 2005 .
[4] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[5] Hendrik Speleers,et al. On the Local Approximation Power of Quasi-Hierarchical Powell-Sabin Splines , 2008, MMCS.
[6] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[7] Hendrik Speleers,et al. Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.
[8] Günther Greiner,et al. Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines , 2010 .
[9] S. Rippa,et al. Data Dependent Triangulations for Piecewise Linear Interpolation , 1990 .
[10] Szilárd Gy. Révész,et al. On Bernstein and Markov-Type Inequalities for Multivariate Polynomials on Convex Bodies , 1999 .
[11] Carlotta Giannelli,et al. Adaptive isogeometric methods with hierarchical splines: error estimator and convergence , 2015, 1502.00565.
[12] C. D. Boor,et al. Spline approximation by quasiinterpolants , 1973 .
[13] András Kroó,et al. On Bernstein-Markov-type inequalities for multivariate polynomials in Lq-norm , 2009, J. Approx. Theory.
[14] Larry Schumaker,et al. Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .
[15] Christophe Rabut. Locally tensor product functions , 2004, Numerical Algorithms.
[16] C. D. Boor,et al. Quasiinterpolants and Approximation Power of Multivariate Splines , 1990 .
[17] Alessandra Sestini,et al. Bivariate hierarchical Hermite spline quasi-interpolation , 2016, 1601.02262.
[18] L. Schumaker,et al. Local Spline Approximation Methods , 1975 .
[19] Hendrik Speleers,et al. Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..
[20] T. Lyche,et al. Some examples of quasi-interpolants constructed from local spline projectors , 2001 .
[21] Paul L. Butzer,et al. Central factorial numbers; their main properties and some applications. , 1989 .