Hierarchical spline spaces: quasi-interpolants and local approximation estimates

A local approximation study is presented for hierarchical spline spaces. Such spaces are composed of a hierarchy of nested spaces and provide a flexible framework for local refinement in any dimensionality. We provide approximation estimates for general hierarchical quasi-interpolants expressed in terms of the truncated hierarchical basis. Under some mild assumptions, we prove that such hierarchical quasi-interpolants and their derivatives possess optimal local approximation power in the general q-norm with 1≤q≤∞$1\leq q\leq \infty $. In addition, we detail a specific family of hierarchical quasi-interpolants defined on uniform hierarchical meshes in any dimensionality. The construction is based on cardinal B-splines of degree p and central factorial numbers of the first kind. It guarantees polynomial reproduction of degree p and it requires only function evaluations at grid points (odd p) or half-grid points (even p). This results in good approximation properties at a very low cost, and is illustrated with some numerical experiments.

[1]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[2]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[3]  Paul Sablonnière,et al.  Recent Progress on Univariate and Multivariate Polynomial and Spline Quasi-interpolants , 2005 .

[4]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[5]  Hendrik Speleers,et al.  On the Local Approximation Power of Quasi-Hierarchical Powell-Sabin Splines , 2008, MMCS.

[6]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[7]  Hendrik Speleers,et al.  Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.

[8]  Günther Greiner,et al.  Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines , 2010 .

[9]  S. Rippa,et al.  Data Dependent Triangulations for Piecewise Linear Interpolation , 1990 .

[10]  Szilárd Gy. Révész,et al.  On Bernstein and Markov-Type Inequalities for Multivariate Polynomials on Convex Bodies , 1999 .

[11]  Carlotta Giannelli,et al.  Adaptive isogeometric methods with hierarchical splines: error estimator and convergence , 2015, 1502.00565.

[12]  C. D. Boor,et al.  Spline approximation by quasiinterpolants , 1973 .

[13]  András Kroó,et al.  On Bernstein-Markov-type inequalities for multivariate polynomials in Lq-norm , 2009, J. Approx. Theory.

[14]  Larry Schumaker,et al.  Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .

[15]  Christophe Rabut Locally tensor product functions , 2004, Numerical Algorithms.

[16]  C. D. Boor,et al.  Quasiinterpolants and Approximation Power of Multivariate Splines , 1990 .

[17]  Alessandra Sestini,et al.  Bivariate hierarchical Hermite spline quasi-interpolation , 2016, 1601.02262.

[18]  L. Schumaker,et al.  Local Spline Approximation Methods , 1975 .

[19]  Hendrik Speleers,et al.  Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..

[20]  T. Lyche,et al.  Some examples of quasi-interpolants constructed from local spline projectors , 2001 .

[21]  Paul L. Butzer,et al.  Central factorial numbers; their main properties and some applications. , 1989 .