Modelling of the laser dynamics of electrically pumped organic semiconductor laser diodes

The properties of electrically pumped organic laser devices are investigated by the self consistent numerical solution of the spatially inhomogeneous laser rate equations coupled to a drift-diffusion model for the electrons, holes and singlet excitons. By fully taking into account the effect of stimulated emission on the exciton population, we determine the spatial and temporal evolution of the photon density in organic multilayer structures. We apply the model to calculate laser threshold current densities and investigate transient phenomena like the delay of radiation onset. By performing systematic parameter variations, we derive design rules for potential organic laser diode structures.

[1]  D. Hertel,et al.  Charge Carrier Mobility in a Ladder-Type Conjugated Polymer , 1998 .

[2]  J. Ferraris,et al.  Charge transport in polymer light-emitting diodes at high current density , 1999 .

[3]  Ullrich Scherf,et al.  Spin-conserving carrier recombination in conjugated polymers , 2005, Nature materials.

[4]  C.-H. Chen,et al.  Recent progress of molecular organic electroluminescent materials and devices , 2002 .

[5]  Wolfgang Kowalsky,et al.  Deep blue widely tunable organic solid-state laser based on a spirobifluorene derivative , 2004 .

[6]  C. Burrus,et al.  Short-cavity InGaAsP injection lasers: Dependence of mode spectra and single-longitudinal-mode power on cavity length , 1982 .

[7]  Donal D. C. Bradley,et al.  Fluorene-based conjugated polymer optical gain media , 2003 .

[8]  Markus S. Gross,et al.  Efficient blue organic light-emitting diodes with graded hole-transport layers. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[9]  Hidetoshi Yamamoto,et al.  Extremely-high-density carrier injection and transport over 12000A∕cm2 into organic thin films , 2005 .

[10]  U Albrecht,et al.  Efficiency of charge recombination in organic light emitting diodes , 1995 .

[11]  Chihaya Adachi,et al.  Carrier Injection and Transport of Steady-State High Current Density Exceeding 1000 A/cm2 in Organic Thin Films* , 2003 .

[12]  S. Forrest,et al.  Laser action in organic semiconductor waveguide and double-heterostructure devices , 1997, Nature.

[13]  R. H. Friend,et al.  Lasing from conjugated-polymer microcavities , 1996, Nature.

[14]  Nir Tessler,et al.  Lasers Based on Semiconducting Organic Materials , 1999 .

[15]  Stephen R. Forrest,et al.  Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films , 1998 .

[16]  Donal D. C. Bradley,et al.  Quantifying the efficiency of electrodes for positive carrier injection into poly(9,9-dioctylfluorene) and representative copolymers , 2001 .

[17]  Donal D. C. Bradley,et al.  High Mobility Hole Transport Fluorene‐Triarylamine Copolymers , 1999 .

[18]  Mats Andersson,et al.  Plastic lasers: Semiconducting polymers as a new class of solid-state laser materials , 1997 .

[19]  Wolfgang Kowalsky,et al.  An Ultraviolet Organic Thin‐Film Solid‐State Laser for Biomarker Applications , 2005 .

[20]  N. T. Harrison,et al.  CURRENT HEATING IN POLYMER LIGHT EMITTING DIODES , 1998 .

[21]  Ardie D. Walser,et al.  Bimolecular reactions of singlet excitons in tris(8-hydroxyquinoline) aluminum , 1996 .

[22]  Marvin J. Weber,et al.  Handbook of Optical Materials , 2002 .

[23]  K. Chiang Review of numerical and approximate methods for the modal analysis of general optical dielectric waveguides , 1994 .

[24]  Martin A. Abkowitz,et al.  Evolution in the charge injection efficiency of evaporated Au contacts on a molecularly doped polymer , 1998 .

[25]  U. Lemmer,et al.  Parametric study of modal gain and threshold power density in electrically pumped single-layer organic optical amplifier and laser diode structures , 2005, IEEE Journal of Quantum Electronics.

[26]  M. Ishii,et al.  Organic Light-Emitting Diodes Using Triphenylamine Based Hole Transporting Materials , 2000 .

[27]  Klaus Meerholz,et al.  Multi-colour organic light-emitting displays by solution processing , 2003, Nature.

[28]  N. T. Harrison,et al.  Peak current density and brightness from poly(p-phenylenevinylene) based light-emitting diodes , 1998 .

[29]  Thomas F. Krauss,et al.  Tuneable distributed feedback lasing in MEH-PPV films , 2001 .

[30]  Tom J. Savenije,et al.  Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer , 1998 .

[31]  N. Tessler,et al.  All-polymer optoelectronic devices , 1999, Science.

[32]  M. Abkowitz,et al.  Direct evaluation of contact injection efficiency into small molecule based transport layers: Influence of extrinsic factors , 1998 .

[33]  Franco Cacialli,et al.  LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes , 2000 .

[34]  Jan Birnstock,et al.  High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers , 2004 .

[35]  M. Gerken,et al.  Amplified spontaneous emission in an organic semiconductor multilayer waveguide structure including a highly conductive transparent electrode , 2005 .

[36]  Piers Andrew,et al.  Emission Characteristics and Performance Comparison of Polyfluorene Lasers with One‐ and Two‐Dimensional Distributed Feedback , 2004 .

[37]  Tetsuo Tsutsui,et al.  CHARGE CARRIER MOBILITY IN VACUUM-SUBLIMED DYE FILMS FOR LIGHT-EMITTING DIODES STUDIED BY THE TIME-OF-FLIGHT TECHNIQUE , 2003 .

[38]  Francis G. Celii,et al.  Characterization of organic thin films for OLEDs using spectroscopic ellipsometry , 1997 .

[39]  D. Davidov,et al.  Transient uv electroluminescence from poly(p-phenylenevinylene) conjugated polymer induced by strong voltage pulses , 1997 .

[40]  Hartwig Tillmann,et al.  Photo-physical characterisation and travelling-wave lasing of some TPD-based polymer neat films , 2002 .

[41]  Alan J. Heeger,et al.  Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals , 1996 .

[42]  Tetsuo Tsutsui,et al.  High electron mobility in bathophenanthroline , 2000 .

[43]  C. H. Chen,et al.  Electroluminescence of doped organic thin films , 1989 .

[44]  S. Forrest,et al.  Nearly 100% internal phosphorescence efficiency in an organic light emitting device , 2001 .

[45]  P. Blom,et al.  Electrical characterization of polymer light-emitting diodes , 1998 .

[46]  S. Forrest,et al.  Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations , 2000, IEEE Journal of Quantum Electronics.

[47]  Hartwig Tillmann,et al.  Travelling-wave lasing of triphenylamine-based poly(phenylene vinylene) , 2001 .

[48]  Peter A. Hobson,et al.  The role of surface plasmons in organic light-emitting diodes , 2002 .

[49]  Eva Harth,et al.  EXCITON DIFFUSION AND DISSOCIATION IN CONJUGATED POLYMER/FULLERENE BLENDS AND HETEROSTRUCTURES , 1999 .

[50]  C.-H. Chen,et al.  Recent progress of molecular organic electroluminescent materials and devices , 2002 .

[51]  A. Gombert,et al.  Very compact tunable solid-state laser utilizing a thin-film organic semiconductor. , 2001, Optics letters.

[52]  Uli Lemmer,et al.  Conjugated polymers: lasing and stimulated emission , 2001 .

[53]  Richard H. Friend,et al.  High Peak Brightness Polymer Light‐Emitting Diodes , 1998 .