Hydrogen evolution by cobalt tetraimine catalysts adsorbed on electrode surfaces.

Aryl-substituted tetraimine complexes related to Co(dmgBF(2))(2)(MeCN)(2) (dmg = dimethylglyoxime) were synthesized and are active for hydrogen evolution. Co(dmgBF(2))(2)(MeCN)(2) can be adsorbed to a glassy carbon electrode. The chemically modified electrode is active for hydrogen evolution in aqueous solution at pH < 4.5, with an overpotential of only 100 mV.

[1]  M. Fontecave,et al.  Cobaloximes as functional models for hydrogenases. 2. Proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media. , 2007, Inorganic chemistry.

[2]  M. Fontecave,et al.  Proton electroreduction catalyzed by cobaloximes: functional models for hydrogenases. , 2005, Inorganic chemistry.

[3]  P. Millet,et al.  Cobalt clathrochelate complexes as hydrogen-producing catalysts. , 2008, Angewandte Chemie.

[4]  Aaron D. Wilson,et al.  Hydrogen production using cobalt-based molecular catalysts containing a proton relay in the second coordination sphere , 2008 .

[5]  E. Uhlig,et al.  Untersuchungen an Oximkomplexen. III. Nickelchelate des Bis‐(diacetylmonoxim‐imino)‐propans‐1,3 und des Bis‐(diacetylmonoxim‐imino)‐äthans‐1,2 , 1966 .

[6]  Akira Yamakata,et al.  Hydrogen evolution reaction catalyzed by proton-coupled redox cycle of 4,4'-bipyridine monolayer adsorbed on silver electrodes. , 2008, Journal of the American Chemical Society.

[7]  M. Kaneko,et al.  Highly active electrocatalysis by cobalt tetraphenylporphyrin incorporated in a Nafion membrane for proton reduction , 1998 .

[8]  Pingwu Du,et al.  A homogeneous system for the photogeneration of hydrogen from water based on a platinum(II) terpyridyl acetylide chromophore and a molecular cobalt catalyst. , 2008, Journal of the American Chemical Society.

[9]  Daniel L DuBois,et al.  Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays. , 2006, Journal of the American Chemical Society.

[10]  A. Koca,et al.  Investigation of the electrocatalytic activity of metalophthalocyanine complexes for hydrogen production from water , 2006 .

[11]  T. Spiro,et al.  Cobalt(I) porphyrin catalysis of hydrogen production from water , 1985 .

[12]  A. Bond,et al.  Influence of isomeric form, chelated ring size, and the metal on the oxidation of facial and meridional chromium, molybdenum, and tungsten tricarbonyl bis(bis(diphenylphosphino)methane) and bis(1,2-bis(diphenylphosphino)ethane) complexes , 1986 .

[13]  E. Zangrando,et al.  Synthesis and Molecular Structures of Nickel(II) and Cobalt(III) Complexes with 2‐(Arylimino)‐3‐(hydroxyimino)butane , 2003 .

[14]  A. Salimi,et al.  Electrocatalytic activity of cobaloxime complexes adsorbed on glassy carbon electrodes toward the reduction of dioxygen , 2001 .

[15]  C. Mealli,et al.  Models for the hydrogenases put the focus where it should be--hydrogen. , 2007, Angewandte Chemie.

[16]  Oemer A. Osmanbas,et al.  Electrocatalytic activity of phthalocyanines bearing thiophenes for hydrogen production from water , 2008 .

[17]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[18]  Nathan S Lewis,et al.  Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes. , 2005, Chemical communications.

[19]  G. Costa,et al.  Vitamin b12 model compounds - cobalt chelates of bis(diacetylmonoxime -imino)propane 1–3 , 1969 .

[20]  J. Espenson,et al.  Cobalt-catalyzed evolution of molecular hydrogen , 1986 .

[21]  F. Armstrong,et al.  A Natural Choice for Activating Hydrogen , 2008, Science.

[22]  Xin Yang,et al.  Synthesis of the H-cluster framework of iron-only hydrogenase , 2005, Nature.

[23]  B. Brunschwig,et al.  Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. , 2007, Journal of the American Chemical Society.

[24]  H. Girault,et al.  Hydrogen Evolution at Liquid–Liquid Interfaces , 2009 .

[25]  Michael L. Singleton,et al.  Synthetic support of de novo design: sterically bulky [FeFe]-hydrogenase models. , 2008, Angewandte Chemie.

[26]  C. M. Elliott,et al.  Indium tin oxide electrodes modified with tris(2,2'-bipyridine-4,4'-dicarboxylic acid) iron(II) and the catalytic oxidation of tris(4,4'-di-tert-butyl-2,2'-bipyridine) cobalt(II). , 2005, Langmuir : the ACS journal of surfaces and colloids.

[27]  T. Spiro,et al.  Cobalt porphyrin electrode films as hydrogen catalysts , 1985 .

[28]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[29]  F. Armstrong,et al.  Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. , 2008, Chemical reviews.

[30]  F. Anson,et al.  Novel Multinuclear Catalysts for the Electroreduction of Dioxygen Directly to Water , 1997 .

[31]  Ahmed A. Eltoukhy,et al.  Transmetalation of tetranuclear copper complexes. VIII: Transmetalation of tetranuclear copper(I) complexes with a Co(NS)3 reagent , 1986 .

[32]  G. Wallace,et al.  A readily-prepared electrocatalytic coating that is more active than platinum for hydrogen generation in 1 M strong acid. , 2004, Chemical communications.

[33]  D. Lichtenberger,et al.  Iron-only hydrogenase mimics. Thermodynamic aspects of the use of electrochemistry to evaluate catalytic efficiency for hydrogen generation. , 2007, Inorganic chemistry.