One-step electrochemical modification of carbon nanotubes by ruthenium complexes via new diazonium salts

Abstract The synthesis of new diazonium salts of bipyridine or terpyridine ruthenium complexes is described. Introduction of a phenyl spacer between a metal ligand and the N 2 + group play a key role to stabilize these compounds. Electrochemical experiments performed first on vitreous carbon present the reduction of diazonium ion to a radical and the electrografting of metal complexes on the carbon surface. The films formed on the electrode surface are stable, adherent and electrochemically active (redox polymers). On the basis of these results, diazonium ruthenium complexes have been electropolymerized on carbon nanotubes bucky papers. In spite of the increase in electrical resistance, the analysis of the electrochemical behavior of the modified nanotubes provides evidence of the typical electrochemical signature of metal complexes grafted on the bucky paper, also confirmed with UV–vis and Raman spectroscopies.

[1]  P. Rannou,et al.  Plastic Solar Cells Based on Fluorenone‐Containing Oligomers and Regioregular Alternate Copolymers , 2005 .

[2]  D. Kosynkin,et al.  Fluorinated biphenyls from aromatic arylations with pentafluorobenzenediazonium and related cations. Competition between arylation and azo coupling , 1997 .

[3]  Stanislaus S. Wong,et al.  Covalent Surface Chemistry of Single‐Walled Carbon Nanotubes , 2005 .

[4]  R. Smalley,et al.  Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. , 2001, Journal of the American Chemical Society.

[5]  H. Kataura,et al.  Optical Properties of Single-Wall Carbon Nanotubes , 1999 .

[6]  Héctor D. Abruña,et al.  Electropolymerization of vinylpyridine and vinylbipyridine complexes of iron and ruthenium: homopolymers, copolymers, reactive polymers , 1982 .

[7]  D. Craig,et al.  Bis[4′-(4-anilino)-2,2′∶6′,2″-terpyridine]transition-metal complexes: electrochemically activemonomers with a range of magnetic and optical properties for assembly ofmetallo oligomers and macromolecules , 1997 .

[8]  M. Prato,et al.  Chemistry of carbon nanotubes. , 2006, Chemical reviews.

[9]  M. Dresselhaus,et al.  Anti-Stokes Raman spectra of single-walled carbon nanotubes , 2000 .

[10]  T. Swager,et al.  Conjugated polymer-based chemical sensors. , 2000, Chemical reviews.

[11]  S. Sinnott,et al.  Carbon Nanotubes: Synthesis, Properties, and Applications , 2001 .

[12]  J. Pinson,et al.  Grafting of Nitrophenyl Groups on Carbon and Metallic Surfaces without Electrochemical Induction , 2005 .

[13]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[14]  Durairaj Baskaran,et al.  Carbon nanotubes with covalently linked porphyrin antennae: photoinduced electron transfer. , 2005, Journal of the American Chemical Society.

[15]  U. Schlecht,et al.  Electrochemical modification of single carbon nanotubes. , 2002, Angewandte Chemie.

[16]  H. Abruña Coordination chemistry in two dimensions: chemically modified electrodes , 1988 .

[17]  K. Balasubramanian,et al.  Chemically functionalized carbon nanotubes. , 2005, Small.

[18]  J. F. Stoddart,et al.  Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. , 2006, Nano letters.

[19]  Jean-Michel Savéant,et al.  Covalent Modification of Carbon Surfaces by Grafting of Functionalized Aryl Radicals Produced from Electrochemical Reduction of Diazonium Salts , 1992 .

[20]  W. Blau,et al.  Interconnecting carbon nanotubes with an inorganic metal complex. , 2002, Journal of the American Chemical Society.

[21]  Franz-Josef Wortmann,et al.  Investigations on the thermal stability of a diazonium ion on solid support , 2002 .

[22]  K. Balasubramanian,et al.  A Selective Electrochemical Approach to Carbon Nanotube Field-Effect Transistors , 2004 .

[23]  J. Pinson,et al.  Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts , 1997 .

[24]  M. Billon,et al.  Bio-Assemblies onto Conducting Polymer Support: Implementation of DNA-Chips , 2004 .

[25]  J. Pinson,et al.  Electrochemical functionalization of nanotube films: growth of aryl chains on single-walled carbon nanotubes , 2004 .

[26]  J. Pinson,et al.  Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. , 2005, Chemical Society reviews.

[27]  R. Murray,et al.  Chemical and electrochemical properties of 2,2'-bipyridyl complexes of ruthenium covalently bound to platinum oxide electrodes , 1979 .

[28]  B. P. Sullivan,et al.  Cis-trans isomerism in (trpy)(PPh3)RuC12. Comparisons between the chemical and physical properties of a cis-trans isomeric pair , 1980 .

[29]  M. McDermott,et al.  Nucleation and Growth of Functionalized Aryl Films on Graphite Electrodes , 1999 .

[30]  Phenylene ethynylene diazonium salts as potential self-assembling molecular devices. , 2001, Organic letters.

[31]  G. Bidan,et al.  Electroconducting conjugated polymers: New sensitive matrices to build up chemical or electrochemical sensors. A review☆ , 1992 .

[32]  Magnus Palmblad,et al.  Electron donor-acceptor dyads based on ruthenium(II) bipyridine and terpyridine complexes bound to naphthalenediimide. , 2003, Inorganic chemistry.

[33]  Ya‐Ping Sun,et al.  Single‐Walled Carbon Nanotubes Tethered with Porphyrins: Synthesis and Photophysical Properties , 2004 .

[34]  F. Bedioui,et al.  A new class of functionalized terpyridyl ligands as building blocks for photosensitized supramolecular architectures. Synthesis, structural, and electronic characterizations. , 2002, Journal of the American Chemical Society.

[35]  Dominique Vuillaume,et al.  Optoelectronic Switch and Memory Devices Based on Polymer‐Functionalized Carbon Nanotube Transistors , 2006 .

[36]  R. Smalley,et al.  Raman modes of metallic carbon nanotubes , 1998 .

[37]  D. Miller Straightening out light , 2006, Nature materials.

[38]  J. F. Stoddart,et al.  Interactions between Conjugated Polymers and Single-Walled Carbon Nanotubes , 2002 .

[39]  A. Deronzier,et al.  POLYPYRROLE FILMS CONTAINING METAL COMPLEXES : SYNTHESES AND APPLICATIONS , 1996 .

[40]  A. M. Rao,et al.  Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes , 1997, Science.

[41]  Philip Kim,et al.  Directing and sensing changes in molecular conformation on individual carbon nanotube field effect transistors. , 2005, Journal of the American Chemical Society.

[42]  R. Haddon,et al.  Persistent photoconductivity in chemically modified single-wall carbon nanotubes , 2004 .

[43]  A. Hirsch Functionalization of single-walled carbon nanotubes. , 2002, Angewandte Chemie.