Random switching near bifurcations

The interplay between bifurcations and random switching processes of vector fields is studied. More precisely, we provide a classification of piecewise-deterministic Markov processes arising from stochastic switching dynamics near fold, Hopf, transcritical and pitchfork bifurcations. We prove the existence of invariant measures for different switching rates. We also study when the invariant measures are unique, when multiple measures occur, when measures have smooth densities, and under which conditions finite-time blow-up occurs. We demonstrate the applicability of our results for three nonlinear models arising in applications.

[1]  Edouard Strickler,et al.  Randomly switched vector fields sharing a zero on a common invariant face , 2018, Stochastics and Dynamics.

[2]  C. Kuehn Quenched noise and nonlinear oscillations in bistable multiscale systems , 2017, 1711.02992.

[3]  Shengqiang Liu,et al.  Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching , 2017, 1707.06380.

[4]  C. Kuehn,et al.  Stochastic mixed-mode oscillations in a three-species predator-prey model. , 2017, Chaos.

[5]  Paul C. Bressloff,et al.  Stochastic switching in biology: from genotype to phenotype , 2017 .

[6]  M. Benaim,et al.  Random switching between vector fields having a common zero , 2017, The Annals of Applied Probability.

[7]  Manon Baudel,et al.  Spectral Theory for Random Poincaré Maps , 2016, SIAM J. Math. Anal..

[8]  M. Rasmussen,et al.  Bifurcation Analysis of a Stochastically Driven Limit Cycle , 2016, Communications in Mathematical Physics.

[9]  A. Majda,et al.  Geometric Ergodicity for Piecewise Contracting Processes with Applications for Tropical Stochastic Lattice Models , 2016 .

[10]  Christian Kuehn,et al.  Moment Closure—A Brief Review , 2015, 1505.02190.

[11]  F. Malrieu Some simple but challenging Markov processes , 2014, 1412.7516.

[12]  Claude Lobry,et al.  Lotka–Volterra with randomly fluctuating environments or “how switching between beneficial environments can make survival harder” , 2014, 1412.1107.

[13]  Jonathan C. Mattingly,et al.  Regularity of invariant densities for 1D systems with random switching , 2014, 1406.5425.

[14]  Jonathan C. Mattingly,et al.  Sensitivity to switching rates in stochastically switched odes , 2013, 1310.2525.

[15]  R. Sujith,et al.  Uncertainty quantification of subcritical bifurcations , 2013 .

[16]  G. Teschl Ordinary Differential Equations and Dynamical Systems , 2012 .

[17]  M. Benaim,et al.  Qualitative properties of certain piecewise deterministic Markov processes , 2012, 1204.4143.

[18]  Pierre-Andr'e Zitt,et al.  On the stability of planar randomly switched systems , 2012, 1204.1921.

[19]  Tobias Hurth,et al.  Invariant densities for dynamical systems with random switching , 2012, 1203.5744.

[20]  M. Benaim,et al.  Quantitative ergodicity for some switched dynamical systems , 2012, 1204.1922.

[21]  Gábor Horváth,et al.  Fluid level dependent Markov fluid models with continuous zero transition , 2011, Perform. Evaluation.

[22]  Christian Kuehn,et al.  Deterministic Continuation of Stochastic Metastable Equilibria via Lyapunov Equations and Ellipsoids , 2011, SIAM J. Sci. Comput..

[23]  Gerd Zschaler,et al.  Adaptive-network models of swarm dynamics , 2010, 1009.2349.

[24]  A. Faggionato,et al.  Non-equilibrium Thermodynamics of Piecewise Deterministic Markov Processes , 2009 .

[25]  F. C. Santos,et al.  Evolutionary games in self-organizing populations , 2008 .

[26]  A. Faggionato,et al.  Averaging and large deviation principles for fully-coupled piecewise deterministic Markov processes and applications to molecular motors , 2008, 0808.1910.

[27]  Vladimir V. Anisimov,et al.  Switching Processes in Queueing Models , 2008 .

[28]  Joseph J. Hale,et al.  From Disorder to Order in Marching Locusts , 2006, Science.

[29]  N. Berglund,et al.  Noise-Induced Phenomena in Slow-Fast Dynamical Systems: A Sample-Paths Approach , 2005 .

[30]  Reuben Hersh,et al.  The Birth of Random Evolutions , 2003 .

[31]  L. Arnold Random Dynamical Systems , 2003 .

[32]  Editors , 2003 .

[33]  K. Kirk,et al.  ENRICHMENT CAN STABILIZE POPULATION DYNAMICS: AUTOTOXINS AND DENSITY DEPENDENCE , 1998 .

[34]  K. Elworthy ERGODICITY FOR INFINITE DIMENSIONAL SYSTEMS (London Mathematical Society Lecture Note Series 229) By G. Da Prato and J. Zabczyk: 339 pp., £29.95, LMS Members' price £22.47, ISBN 0 521 57900 7 (Cambridge University Press, 1996). , 1997 .

[35]  J. Zabczyk,et al.  Ergodicity for Infinite Dimensional Systems: Invariant measures for stochastic evolution equations , 1996 .

[36]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[37]  Mark H. Davis Markov Models and Optimization , 1995 .

[38]  William W. Murdoch,et al.  Predator–prey dynamics in environments rich and poor in nutrients , 1990, Nature.

[39]  Mark H. A. Davis Piecewise‐Deterministic Markov Processes: A General Class of Non‐Diffusion Stochastic Models , 1984 .

[40]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[41]  N. K. Rozov,et al.  Differential Equations with Small Parameters and Relaxation Oscillations , 1980 .

[42]  M. Kac A stochastic model related to the telegrapher's equation , 1974 .

[43]  M. Rosenzweig Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time , 1971, Science.

[44]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[45]  I. Kovacic Nonlinear Oscillations , 2020 .

[46]  M. Benaïm Stochastic Persistence ∗ ( Part I ) , 2018 .

[47]  G. Yin,et al.  Hybrid Switching Diffusions , 2010 .

[48]  Luc Rey-Bellet,et al.  Ergodic properties of Markov processes , 2006 .

[49]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[50]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[51]  S. Goldstein ON DIFFUSION BY DISCONTINUOUS MOVEMENTS, AND ON THE TELEGRAPH EQUATION , 1951 .