Differential Evolution for Binary Encoding

Differential Evolution (DE) is a competitive optimization technique for numerical optimization problems with real-parameter representation. This paper aims to investigate how DE can be adapted with binary encoding and to study its behaviors on the binary level.

[1]  Günter Rudolph,et al.  How Mutation and Selection Solve Long-Path Problems in Polynomial Expected Time , 1996, Evolutionary Computation.

[2]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[3]  David E. Goldberg,et al.  Genetic Algorithm Difficulty and the Modality of Fitness Landscapes , 1994, FOGA.

[4]  Patrick David Surry,et al.  Prescriptive formalism for constructing domain-specific evolutionary algorithms , 1998 .

[5]  David E. Goldberg,et al.  Genetic Algorithms and Walsh Functions: Part I, A Gentle Introduction , 1989, Complex Syst..

[6]  Reinhard Männer,et al.  Parallel Problem Solving from Nature — PPSN III , 1994, Lecture Notes in Computer Science.

[7]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[8]  Nicholas J. Radcliffe,et al.  The algebra of genetic algorithms , 1994, Annals of Mathematics and Artificial Intelligence.

[9]  Kalyanmoy Deb,et al.  Long Path Problems , 1994, PPSN.

[10]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[11]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[12]  Andrew Tuson,et al.  No optimisation without representation : a knowledge based systems view of evolutionary/neighbourhood search optimisation , 1999 .

[13]  Tao Gong,et al.  Formal Descriptions of Real Parameter Optimisation , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[14]  Melanie Mitchell,et al.  The royal road for genetic algorithms: Fitness landscapes and GA performance , 1991 .