Finite‐difference quasi‐P traveltimes for anisotropic media

The first‐arrival quasi‐P wave traveltime field in an anisotropic elastic solid solves a first‐order nonlinear partial differential equation, the q P eikonal equation. The difficulty in solving this eikonal equation by a finite‐difference method is that for anisotropic media the ray (group) velocity direction is not the same as the direction of the traveltime gradient, so that the traveltime gradient can no longer serve as an indicator of the group velocity direction in extrapolating the traveltime field. However, establishing an explicit relation between the ray velocity vector and the phase velocity vector overcomes this difficulty. Furthermore, the solution of the paraxial q P eikonal equation, an evolution equation in depth, gives the first‐arrival traveltime along downward propagating rays. A second‐order upwind finite‐difference scheme solves this paraxial eikonal equation in O(N) floating point operations, where N is the number of grid points. Numerical experiments using 2‐D and 3‐D transversely is...

[1]  F. Fedorov Theory of Elastic Waves in Crystals , 1968 .

[2]  V. Červený Seismic Rays and Ray Intensities in Inhomogeneous Anisotropic Media , 1972 .

[3]  James G. Berryman,et al.  Long-wave elastic anisotropy in transversely isotropic media , 1979 .

[4]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .

[5]  P. Lions,et al.  Viscosity solutions of Hamilton-Jacobi equations , 1983 .

[6]  L. Thomsen Weak elastic anisotropy , 1986 .

[7]  Moshe Reshef,et al.  Migration of common‐shot gathers , 1986 .

[8]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[9]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[10]  David D. Jackson,et al.  Inversion of reflection traveltimes and amplitudes , 1987 .

[11]  J. Vidale Finite-difference calculation of travel times , 1988 .

[12]  P. Shearer,et al.  Ray tracing in anisotropic media with a linear gradient , 1988 .

[13]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[14]  William W. Symes,et al.  Upwind finite-difference calculation of traveltimes , 1991 .

[15]  A. Balch,et al.  A dynamic programming approach to first arrival traveltime computation in media with arbitrarily distributed velocities , 1992 .

[16]  R. G. Pratt,et al.  Traveltime tomography in anisotropic media—II. Application , 1992 .

[17]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[18]  Gerard T. Schuster,et al.  First‐arrival traveltime calculation for anisotropic media , 1993 .

[19]  S. Gray,et al.  Kirchhoff migration using eikonal equation traveltimes , 1994 .

[20]  W. Schneider Robust and efficient upwind finite-difference traveltime calculations in three dimensions , 1995 .

[21]  Ilya Tsvankin,et al.  Inversion of reflection traveltimes for transverse isotropy , 1995 .

[22]  Wang Chi-Shu,et al.  Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws , 1997 .

[23]  Wavefront construction (WF) ray tracing in tetrahedral models — Application to 3‐D traveltime and ray path computations , 1997 .

[24]  W. Symes,et al.  Anisotropic finite‐difference traveltimes using a Hamilton‐Jacobi solver , 1997 .

[25]  Satish C. Singh,et al.  Traveltime And Polarisation Tomography In 3-D Anisotropic Media , 1998 .

[26]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[27]  J. Sethian,et al.  3-D traveltime computation using the fast marching method , 1999 .

[28]  Richard I. Cook,et al.  3-D traveltime computation using second‐order ENO scheme , 1999 .

[29]  J. Sethian,et al.  traveltime computation using the fast marching method , 1999 .

[30]  Jianliang Qian,et al.  Adaptive Finite Difference Method For Traveltime And Amplitude , 1999 .

[31]  J. Qian Geometrical optics for quasi-P waves: Theories and numerical methods , 2000 .

[32]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .