Patterns with Bounded Treewidth

We show that any parameter of patterns that is an upper bound for the treewidth of appropriate encodings of patterns as relational structures, if restricted to a constant, allows the membership problem for pattern languages to be solved in polynomial time. Furthermore, we identify a new such parameter, called the scope coincidence degree.

[1]  Daniel Reidenbach,et al.  Finding shuffle words that represent optimal scheduling of shared memory access , 2013, Int. J. Comput. Math..

[2]  Robin Thomas,et al.  Graph Searching and a Min-Max Theorem for Tree-Width , 1993, J. Comb. Theory, Ser. B.

[3]  Raphaël Clifford,et al.  Generalised Matching , 2009, SPIRE.

[4]  Sandra Zilles,et al.  Learning Relational Patterns , 2011, ALT.

[5]  Grzegorz Rozenberg,et al.  Developments in Language Theory II , 2002 .

[6]  Rüdiger Reischuk,et al.  An Average-Case Optimal One-Variable Pattern Language Learner , 2000, J. Comput. Syst. Sci..

[7]  H. Bodlaender Classes of graphs with bounded tree-width , 1986 .

[8]  Oscar H. Ibarra,et al.  A note on parsing pattern languages , 1995, Pattern Recognit. Lett..

[9]  Sheng Yu,et al.  A Formal Study Of Practical Regular Expressions , 2003, Int. J. Found. Comput. Sci..

[10]  Daniel Reidenbach,et al.  A Polynomial Time Match Test for Large Classes of Extended Regular Expressions , 2010, CIAA.

[11]  Hans L. Bodlaender,et al.  Treewidth: Characterizations, Applications, and Computations , 2006, WG.

[12]  Rolf Wiehagen,et al.  Polynomial-time inference of arbitrary pattern languages , 2009, New Generation Computing.

[13]  Daniel Reidenbach,et al.  A non-learnable class of E-pattern languages , 2006, Theor. Comput. Sci..

[14]  Ryo Yoshinaka,et al.  On the Parameterised Complexity of Learning Patterns , 2011, ISCIS.

[15]  Daniel Reidenbach,et al.  Discontinuities in pattern inference , 2008, Theor. Comput. Sci..

[16]  Jürgen Dassow,et al.  Extending regular expressions with homomorphic replacement , 2010, RAIRO Theor. Informatics Appl..

[17]  Borivoj Melichar,et al.  Finding Common Motifs with Gaps Using Finite Automata , 2006, CIAA.

[18]  Wojciech Rytter,et al.  On the Maximal Number of Cubic Runs in a String , 2010, LATA.

[19]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[20]  Amihood Amir,et al.  Generalized function matching , 2007, J. Discrete Algorithms.

[21]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[22]  Takeshi Shinohara,et al.  Polynomial Time Inference of Extended Regular Pattern Languages , 1983, RIMS Symposium on Software Science and Engineering.

[23]  Thomas Zeugmann,et al.  Stochastic Finite Learning of the Pattern Languages , 2001, Machine Learning.

[24]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[25]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[26]  Brenda S. Baker Parameterized Pattern Matching: Algorithms and Applications , 1996, J. Comput. Syst. Sci..

[27]  Takeshi Shinohara,et al.  Developments from enquiries into the learnability of the pattern languages from positive data , 2008, Theor. Comput. Sci..

[28]  Moshe Lewenstein,et al.  Function Matching: Algorithms, Applications, and a Lower Bound , 2003, ICALP.

[29]  Dana Angluin,et al.  Finding Patterns Common to a Set of Strings , 1980, J. Comput. Syst. Sci..

[30]  Eugene C. Freuder Complexity of K-Tree Structured Constraint Satisfaction Problems , 1990, AAAI.

[31]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[32]  Dominik D. Freydenberger,et al.  Inclusion problems for patterns with a bounded number of variables , 2010, Inf. Comput..