Rateless Coding for Gaussian Channels

A rateless code-i.e., a rate-compatible family of codes-has the property that codewords of the higher rate codes are prefixes of those of the lower rate ones. A perfect family of such codes is one in which each of the codes in the family is capacity-achieving. We show by construction that perfect rateless codes with low-complexity decoding algorithms exist for additive white Gaussian noise channels. Our construction involves the use of layered encoding and successive decoding, together with repetition using time-varying layer weights. As an illustration of our framework, we design a practical three-rate code family. We further construct rich sets of near-perfect rateless codes within our architecture that require either significantly fewer layers or lower complexity than their perfect counterparts. Variations of the basic construction are also developed, including one for time-varying channels in which there is no a priori stochastic model.

[1]  G. Velev,et al.  Advanced hybrid ARQ technique employing a signal constellation rearrangement , 2002, Proceedings IEEE 56th Vehicular Technology Conference.

[2]  Michael Mitzenmacher,et al.  A digital fountain approach to asynchronous reliable multicast , 2002, IEEE J. Sel. Areas Commun..

[3]  Urs Niesen,et al.  Rateless Codes for the Gaussian Multiple Access Channel , 2006 .

[4]  Shu Lin,et al.  Automatic-repeat-request error-control schemes , 1984, IEEE Communications Magazine.

[5]  Giuseppe Caire,et al.  Incremental redundancy hybrid ARQ schemes based on low-density parity-check codes , 2004, IEEE Transactions on Communications.

[6]  G.W. Wornell,et al.  Practical layered rateless codes for the gaussian channel: power allocation and implementation , 2007, 2007 IEEE 8th Workshop on Signal Processing Advances in Wireless Communications.

[7]  Jerome M. Shapiro,et al.  Global design methods for raptor codes using binary and higher-order modulations , 2009, MILCOM 2009 - 2009 IEEE Military Communications Conference.

[8]  David M. Mandelbaum,et al.  An adaptive-feedback coding scheme using incremental redundancy (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[9]  David Chase,et al.  Code Combining - A Maximum-Likelihood Decoding Approach for Combining an Arbitrary Number of Noisy Packets , 1985, IEEE Transactions on Communications.

[10]  M. Feder,et al.  Static broadcasting , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[11]  Maryam M. Shanechi Universal codes for parallel Gaussian channels , 2006 .

[12]  Jonathan S. Yedidia,et al.  Rateless codes on noisy channels , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[13]  Urs Niesen,et al.  CTH05-2: Rateless Codes for the Gaussian Multiple Access Channel , 2006, IEEE Globecom 2006.

[14]  Frank R. Kschischang,et al.  A capacity-approaching hybrid ARQ scheme using turbo codes , 1999, Seamless Interconnection for Universal Services. Global Telecommunications Conference. GLOBECOM'99. (Cat. No.99CH37042).

[15]  Gregory W. Wornell,et al.  Rateless space-time coding , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[16]  Krishna R. Narayanan,et al.  Multilevel Coding for Channels with Non-uniform Inputs and Rateless Transmission over the BSC , 2006, 2006 IEEE International Symposium on Information Theory.

[17]  Laurence B. Milstein,et al.  On the performance of hybrid FEC/ARQ systems using rate compatible punctured turbo (RCPT) codes , 2000, IEEE Trans. Commun..

[18]  Gregory W. Wornell,et al.  A super-nyquist architecture for reliable underwater acoustic communication , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[19]  Tiffany Jing Li,et al.  Rate-compatible Low Density Parity Check Codes for Capacity-approaching ARQ Schemes in Packet Data Communications , 2002, Communications, Internet, and Information Technology.

[20]  Giuseppe Caire,et al.  The throughput of hybrid-ARQ protocols for the Gaussian collision channel , 2001, IEEE Trans. Inf. Theory.

[21]  G. Wornell,et al.  On Universal Coding for Parallel Gaussian Channels , 2008, 2008 IEEE International Zurich Seminar on Communications.

[22]  Steven W. McLaughlin,et al.  Rate-compatible puncturing of low-density parity-check codes , 2004, IEEE Transactions on Information Theory.

[23]  Gregory W. Wornell,et al.  Time-invariant rateless codes for MIMO channels , 2008, 2008 IEEE International Symposium on Information Theory.

[24]  Thomas Grundler,et al.  Incremental redundancy and bit-mapping techniques for high speed downlink packet access , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[25]  Chris Jones,et al.  Rate-compatible low-density parity-check codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[26]  Emina Soljanin,et al.  Punctured vs Rateless Codes for Hybrid ARQ , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.

[27]  N. Varnica,et al.  Incremental Redundancy Hybrid ARQ with LDPC and Raptor Codes , 2005 .

[28]  S. S. Pietrobon,et al.  Rate compatible turbo codes , 1995 .

[29]  Joachim Hagenauer,et al.  Rate-compatible punctured convolutional codes (RCPC codes) and their applications , 1988, IEEE Trans. Commun..

[30]  Gregory W. Wornell,et al.  Rateless Codes for MIMO Channels , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[31]  Wayne E. Stark,et al.  Rate-adaptive transmission over correlated fading channels , 2005, IEEE Transactions on Communications.

[32]  G. Wornell,et al.  An Efficient ARQ Scheme with SNR Feedback , 2008, 2008 IEEE International Zurich Seminar on Communications.

[33]  Gregory W. Wornell,et al.  Rateless Coding and Perfect Rate-Compatible Codes for Gaussian Channels , 2006, 2006 IEEE International Symposium on Information Theory.

[34]  Omid Etesami,et al.  Raptor codes on binary memoryless symmetric channels , 2006, IEEE Transactions on Information Theory.