Horizon-absorption effects in coalescing black-hole binaries: An effective-one-body study of the nonspinning case

We study the horizon absorption of gravitational waves in coalescing, circularized, nonspinning black-hole binaries. The horizon-absorbed fluxes of a binary with a large mass ratio (q = 1000) obtained by numerical perturbative simulations are compared with an analytical, effective-one-body (EOB) resummed expression recently proposed. The perturbative method employs an analytical, linear in the mass ratio, EOB-resummed radiation reaction, and the Regge-Wheeler-Zerilli formalism for wave extraction. Hyperboloidal layers are employed for the numerical solution of the Regge-Wheeler-Zerilli equations to accurately compute horizon fluxes up to the late plunge phase. The horizon fluxes from perturbative simulations and the EOB-resummed expression agree at the level of a few percent down to the late plunge. An upgrade of the EOB model for nonspinning binaries that includes horizon absorption of angular momentum as an additional term in the resummed radiation reaction is then discussed. The effect of this term on the waveform phasing for binaries with mass ratios spanning 1–1000 is investigated. We confirm that for comparable and intermediate-mass-ratio binaries horizon absorption is practically negligible for detection with advanced LIGO and the Einstein Telescope (faithfulness ≥ 0.997).

[1]  S. Bose,et al.  Scientific objectives of Einstein Telescope , 2012, 1206.0331.

[2]  Duncan A. Brown,et al.  Accurate modeling of intermediate-mass-ratio inspirals: exploring the form of the self-force in the intermediate-mass-ratio regime , 2012, 1205.5562.

[3]  Michael Boyle,et al.  Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms , 2012, 1202.0790.

[4]  A. Nagar,et al.  Horizon-absorbed energy flux in circularized, nonspinning black-hole binaries and its effective-one-body representation , 2011, 1112.2840.

[5]  Duncan A. Brown,et al.  Importance of including small body spin effects in the modelling of intermediate mass-ratio inspirals. II. Accurate parameter extraction of strong sources using higher-order spin effects , 2011, 1111.3243.

[6]  Christian Reisswig,et al.  Energy versus angular momentum in black hole binaries. , 2011, Physical review letters.

[7]  G. Lovelace,et al.  High-accuracy gravitational waveforms for binary black hole mergers with nearly extremal spins , 2011, 1110.2229.

[8]  S. Bernuzzi,et al.  Binary black hole coalescence in the large-mass-ratio limit: The hyperboloidal layer method and waveforms at null infinity , 2011, 1107.5402.

[9]  A. Buonanno,et al.  Extending the effective-one-body Hamiltonian of black-hole binaries to include next-to-next-to-leading spin-orbit couplings , 2011, 1107.2904.

[10]  A. Nagar Effective one body Hamiltonian of two spinning black-holes with next-to-next-to-leading order spin-orbit coupling , 2011, 1106.4349.

[11]  Michael Boyle,et al.  Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism , 2011, 1106.1021.

[12]  Erik Schnetter,et al.  Collisions of unequal mass black holes and the point particle limit , 2011, 1105.5391.

[13]  J. Gair,et al.  Importance of including small body spin effects in the modelling of extreme and intermediate mass-ratio inspirals , 2011, 1105.3567.

[14]  R. Fujita Gravitational Radiation for Extreme Mass Ratio Inspirals to the 14th Post-Newtonian Order , 2011, 1104.5615.

[15]  Jae-Hun Jung,et al.  A multi-domain hybrid method for head-on collision of black holes in particle limit , 2011, 1103.1551.

[16]  S. Akcay Fast frequency-domain algorithm for gravitational self-force: Circular orbits in Schwarzschild spacetime , 2010, 1012.5860.

[17]  S. Bernuzzi,et al.  Binary black hole coalescence in the extreme-mass-ratio limit: testing and improving the effective-one-body multipolar waveform , 2010, 1012.2456.

[18]  Ermis Mitsou Gravitational radiation from radial infall of a particle into a Schwarzschild black hole: A numerical study of the spectra, quasinormal modes, and power-law tails , 2010, 1012.2028.

[19]  J. Gair,et al.  Intermediate-mass-ratio-inspirals in the Einstein Telescope. II. Parameter estimation errors. , 2010, 1011.0421.

[20]  A. Buonanno,et al.  Extreme Mass-Ratio Inspirals in the Effective-One-Body Approach: Quasi-Circular, Equatorial Orbits around a Spinning Black Hole , 2010, 1009.6013.

[21]  T. Damour,et al.  Accuracy and effectualness of closed-form, frequency-domain waveforms for nonspinning black hole binaries , 2010, 1009.5998.

[22]  Y. Zlochower,et al.  Orbital evolution of extreme-mass-ratio black-hole binaries with numerical relativity. , 2010, Physical review letters.

[23]  Anil Zenginoglu,et al.  Hyperboloidal layers for hyperbolic equations on unbounded domains , 2010, J. Comput. Phys..

[24]  R. Hamerly,et al.  Event horizon deformations in extreme mass-ratio black hole mergers , 2010, 1007.5387.

[25]  B. Iyer,et al.  Spherical harmonic modes of 5.5 post-Newtonian gravitational wave polarizations and associated factorized resummed waveforms for a particle in circular orbit around a Schwarzschild black hole , 2010, 1005.2266.

[26]  Gaurav Khanna,et al.  Binary black hole merger gravitational waves and recoil in the large mass ratio limit , 2010, 1003.0485.

[27]  S. Bernuzzi,et al.  Binary black hole merger in the extreme-mass-ratio limit: a multipolar analysis , 2010, 1003.0597.

[28]  A. Buonanno,et al.  An improved effective-one-body Hamiltonian for spinning black-hole binaries , 2009, 0912.3517.

[29]  Erik Schnetter,et al.  High accuracy binary black hole simulations with an extended wave zone , 2009, 0910.3803.

[30]  A. Buonanno,et al.  Modeling extreme mass ratio inspirals within the effective-one-body approach. , 2009, Physical review letters.

[31]  P. Diener,et al.  Self-force with (3+1) codes: A primer for numerical relativists , 2009, 0908.2138.

[32]  L. Barack Gravitational self-force in extreme mass-ratio inspirals , 2009, 0908.1664.

[33]  B. Szilágyi,et al.  Unambiguous determination of gravitational waveforms from binary black hole mergers. , 2009, Physical review letters.

[34]  Thibault Damour,et al.  Improved analytical description of inspiralling and coalescing black-hole binaries , 2009, 0902.0136.

[35]  José A. González,et al.  B lack-hole binary sim ulations: the m ass ratio 10:1 , 2008, 0811.3952.

[36]  Thibault Damour,et al.  Improved resummation of post-Newtonian multipolar waveforms from circularized compact binaries , 2008, 0811.2069.

[37]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[38]  Lawrence E. Kidder,et al.  High-accuracy waveforms for binary black hole inspiral, merger, and ringdown , 2008, 0810.1767.

[39]  E. Poisson,et al.  Nonrotating black hole in a post-Newtonian tidal environment , 2008, 0806.3052.

[40]  D. Kennefick,et al.  Computational Efficiency of Frequency- and Time-Domain Calculations of Extreme Mass-Ratio Binaries: Equatorial Orbits , 2008, 0804.1075.

[41]  A. Perreca,et al.  Triple Michelson interferometer for a third-generation gravitational wave detector , 2008, 0804.1036.

[42]  Gaurav Khanna,et al.  Towards adiabatic waveforms for inspiral into Kerr black holes. II. Dynamical sources and generic orbits , 2008, 0803.0317.

[43]  Anil Zenginoglu,et al.  Hyperboloidal foliations and scri-fixing , 2007, Classical and Quantum Gravity.

[44]  Jae-Hun Jung,et al.  A Spectral Collocation Approximation For The Radial-Infall Of A Compact Object Into A Schwarzschild Black Hole , 2007, 0711.2545.

[45]  Duncan A. Brown,et al.  Prospects for detection of gravitational waves from intermediate-mass-ratio inspirals. , 2007, Physical review letters.

[46]  T. Damour,et al.  Faithful effective-one-body waveforms of small-mass-ratio coalescing black-hole binaries , 2007, 0705.2519.

[47]  S. Hughes,et al.  Towards adiabatic waveforms for inspiral into Kerr black holes: A new model of the source for the time domain perturbation equation , 2007, gr-qc/0703028.

[48]  T. Damour,et al.  Binary black hole merger in the extreme-mass-ratio limit , 2006, gr-qc/0612096.

[49]  L. Burko,et al.  Accurate time-domain gravitational waveforms for extreme-mass-ratio binaries , 2006, gr-qc/0609002.

[50]  T. Damour,et al.  Gravitational recoil during binary black hole coalescence using the effective one body approach , 2006, gr-qc/0602117.

[51]  B. Owen,et al.  Approximate binary black hole initial data from matched asymptotic expansions , 2005, gr-qc/0503011.

[52]  L. Rezzolla,et al.  Gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes , 2005, gr-qc/0502064.

[53]  K. Martel Gravitational waveforms from a point particle orbiting a Schwarzschild black hole , 2003, gr-qc/0311017.

[54]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[55]  E. Poisson,et al.  A One-Parameter Family of Time-Symmetric Initial Data for the Radial Infall of a Particle into a Schwarzschild Black Hole , 2001, gr-qc/0107104.

[56]  K. Alvi Energy and angular momentum flow into a black hole in a binary , 2001, gr-qc/0107080.

[57]  R. Price,et al.  Tidal interaction in binary-black-hole inspiral. , 2001, Physical review letters.

[58]  T. Damour Coalescence of two spinning black holes: an effective one-body approach , 2001, gr-qc/0103018.

[59]  T. Damour,et al.  Transition from inspiral to plunge in binary black hole coalescences , 2000, gr-qc/0001013.

[60]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1998, gr-qc/9811091.

[61]  T. Damour,et al.  Improved filters for gravitational waves from inspiraling compact binaries , 1997, gr-qc/9708034.

[62]  R. Price,et al.  Head-on collisions of black holes: The particle limit , 1996, gr-qc/9609012.

[63]  Sasaki,et al.  Gravitational radiation from a particle in circular orbit around a black hole. V. Black-hole absorption and tail corrections. , 1994, Physical review. D, Particles and fields.

[64]  S. Orszag,et al.  Numerical solution of problems in unbounded regions: Coordinate transforms , 1977 .

[65]  William H. Press,et al.  Gravitational radiation from a particle falling radially into a schwarzschild black hole , 1971 .

[66]  F. Zerilli Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics , 1969 .