Roll-invariant target decomposition in bistatic polarimetric SAR imagery

The polarimetric information has been widely used to interpret the Synthetic Aperture Radar (SAR) scene. Hence, many coherent and incoherent target decompositions have been recently introduced to extract polarimetric parameters with a physical meaning. Nevertheless, for most of them, the reciprocity assumption is assumed. For a bistatic Polarimetric SAR (PolSAR) sensor, the cross-polarization terms of the scattering matrix are not equal in general. This paper presents a generalization of the Target Scattering Vector Model (TSVM) to the bistatic case. Five roll-invariant parameters are necessary for an unambiguous description of the target scattering mechanism: α s, φ α s , τ1, τ2, and µ. The scattering type magnitude α s and phase φ α s contain information on the scattering type mechanism. The target helicity τ1 is a measure of the target symmetry. The target helicity τ2 contains information on the asymmetrical part of the scattering matrix, and µ is the maximum amplitude return.

[1]  Cécile Titin-Schnaider Physical Meaning of Bistatic Polarimetric Parameters , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Carlos López-Martínez,et al.  Statistical Assessment of Eigenvector-Based Target Decomposition Theorems in Radar Polarimetry , 2005, IEEE Trans. Geosci. Remote. Sens..

[3]  Fundamentals of Bistatic Radar Polarimetry Using the Poincare Sphere Transformations , 2001 .

[4]  Hiroyoshi Yamada,et al.  A four-component decomposition of POLSAR images based on the coherency matrix , 2006, IEEE Geoscience and Remote Sensing Letters.

[5]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[6]  R. Touzi Speckle effect on polarimetric target scattering decomposition of SAR imagery , 2007 .

[7]  E. M. Kennaugh,et al.  Effects of Type of Polarization On Echo Characteristics , 1952 .

[8]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[9]  Ridha Touzi,et al.  Phase of Target Scattering for Wetland Characterization Using Polarimetric C-Band SAR , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[10]  J. R. Huynen,et al.  Measurement of the target scattering matrix , 1965 .

[11]  Thomas L. Ainsworth,et al.  The effect of orientation angle compensation on polarimetric target decompositions , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[12]  Carlos López-Martínez,et al.  Statistical assessment of eigenvector-based target decomposition theorems in radar polarimetry , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Ridha Touzi,et al.  Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Shane Cloude On the status of bistatic polarimetry theory , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[15]  Cécile Titin-Schnaider Polarimetric Characterization of Bistatic Coherent Mechanisms , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[16]  J. Huynen Phenomenological theory of radar targets , 1970 .

[17]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[18]  E.K. Colin Polarimetric optical tools and decompositions applied to SAR images , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[19]  Lionel Bombrun Extension of the Target Scattering Vector Model to the bistatic case , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.