Interior-Point Methods for Massive Support Vector Machines
暂无分享,去创建一个
[1] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[2] Olvi L. Mangasarian,et al. Nonlinear Programming , 1969 .
[3] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[4] Gene H. Golub,et al. Matrix computations , 1983 .
[5] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[6] Michael C. Ferris,et al. Finite termination of the proximal point algorithm , 1991, Math. Program..
[7] Sanjay Mehrotra,et al. On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..
[8] A. Fischer. A special newton-type optimization method , 1992 .
[9] S. Dirkse,et al. Mcplib: a collection of nonlinear mixed complementarity problems , 1995 .
[10] Jacek Gondzio,et al. Multiple centrality corrections in a primal-dual method for linear programming , 1996, Comput. Optim. Appl..
[11] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[12] Thomas G. Dietterich. What is machine learning? , 2020, Archives of Disease in Childhood.
[13] Stephen J. Wright. Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.
[14] J. Platt. Sequential Minimal Optimization : A Fast Algorithm for Training Support Vector Machines , 1998 .
[15] J. C. BurgesChristopher. A Tutorial on Support Vector Machines for Pattern Recognition , 1998 .
[16] Olvi L. Mangasarian,et al. Generalized Support Vector Machines , 1998 .
[17] Wu Li,et al. The Linear l1 Estimator and the Huber M-Estimator , 1998, SIAM J. Optim..
[18] Alexander J. Smola,et al. Learning with kernels , 1998 .
[19] David R. Musicant,et al. Successive overrelaxation for support vector machines , 1999, IEEE Trans. Neural Networks.
[20] Michael C. Ferris,et al. Feasible descent algorithms for mixed complementarity problems , 1999, Math. Program..
[21] Johannes Gehrke,et al. A framework for measuring changes in data characteristics , 1999, PODS '99.
[22] David R. Musicant,et al. Active Support Vector Machine Classification , 2000, NIPS.
[23] Nello Cristianini,et al. An introduction to Support Vector Machines , 2000 .
[24] A. Winsor. Sampling techniques. , 2000, Nursing times.
[25] O. Mangasarian,et al. Massive data discrimination via linear support vector machines , 2000 .
[26] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[27] David R. Musicant,et al. Robust Linear and Support Vector Regression , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[28] Stephen J. Wright. On Reduced Convex QP Formulations of Monotone LCP Problems , 2000 .
[29] Samy Bengio,et al. SVMTorch: Support Vector Machines for Large-Scale Regression Problems , 2001, J. Mach. Learn. Res..
[30] Bernhard Schölkopf,et al. Learning with kernels , 2001 .
[31] Stephen J. Wright,et al. Object-oriented software for quadratic programming , 2003, TOMS.
[32] Corinna Cortes,et al. Support-Vector Networks , 1995, Machine Learning.
[33] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.