FAST LARGE-SAMPLE GOODNESS-OF-FIT TESTS FOR COPULAS

Goodness-of-fit tests are a fundamental element in the copula-based mod- eling of multivariate continuous distributions. Among the different procedures pro- posed in the literature, recent large scale simulations suggest that one of the most powerful tests is based on the empirical process comparing the empirical copula with a parametric estimate of the copula derived under the null hypothesis. As for most of the currently available goodness-of-fit procedures for copula models, the null distribution of the statistic for the latter test is obtained by means of a parametric bootstrap. The main inconvenience of this approach is its high compu- tational cost, which, as the sample size increases, can be regarded as an obstacle to its application. In this work, fast large-sample tests for assessing goodness of fit are obtained by means of multiplier central limit theorems. The resulting procedures are shown to be asymptotically valid when based on popular method-of-moment estimators. Large scale Monte Carlo experiments, involving six frequently used parametric copula families and three different estimators of the copula parameter, confirm that the proposed procedures provide a valid, much faster alternative to the corresponding parametric bootstrap-based tests. An application of the derived tests to the modeling of a well-known insurance data set is presented. The use of the multiplier approach instead of the parametric bootstrap can reduce the computing time from about a day to minutes.

[1]  Jun Yan,et al.  Comparison of three semiparametric methods for estimating dependence parameters in copula models , 2010 .

[2]  Stuart A. Klugman,et al.  Fitting bivariate loss distributions with copulas , 1999 .

[3]  Winfried Stute,et al.  The Oscillation Behavior of Empirical Processes: The Multivariate Case , 1984 .

[4]  Daniel Berg,et al.  Local sensitivity analyses of goodness-of-fit tests for copulas , 2007 .

[5]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[6]  Yanqin Fan,et al.  Pseudo‐likelihood ratio tests for semiparametric multivariate copula model selection , 2005 .

[7]  Bruno Rémillard,et al.  Goodness‐of‐fit Procedures for Copula Models Based on the Probability Integral Transformation , 2006 .

[8]  Lee-Jen Wei,et al.  Confidence bands for survival curves under the proportional , 1994 .

[9]  C. Genest,et al.  Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .

[10]  Michael R. Kosorok,et al.  Temporal process regression , 2004 .

[11]  Yanqing Sun,et al.  CHECKING FOR THE GAMMA FRAILTY DISTRIBUTION UNDER THE MARGINAL PROPORTIONAL HAZARDS FRAILTY MODEL , 2004 .

[12]  Alan Genz,et al.  Numerical computation of rectangular bivariate and trivariate normal and t probabilities , 2004, Stat. Comput..

[13]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[14]  Jun Yan,et al.  Modeling Multivariate Distributions with Continuous Margins Using the copula R Package , 2010 .

[15]  H. Tsukahara,et al.  Semiparametric estimation in copula models , 2005 .

[16]  Daniel Berg Copula goodness-of-fit testing: an overview and power comparison , 2009 .

[17]  Jean-David Fermanian,et al.  Goodness-of-fit tests for copulas , 2005 .

[18]  M. Kosorok Introduction to Empirical Processes and Semiparametric Inference , 2008 .

[19]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[20]  P. Sen,et al.  Theory of rank tests , 1969 .

[21]  J. E. García,et al.  A non-parametric test of independence ∗ , 2011 .

[22]  Jun Yan,et al.  A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems , 2011, Stat. Comput..

[23]  R. Plackett A REDUCTION FORMULA FOR NORMAL MULTIVARIATE INTEGRALS , 1954 .

[24]  T. Louis,et al.  Inferences on the association parameter in copula models for bivariate survival data. , 1995, Biometrics.

[25]  C. Genest Frank's family of bivariate distributions , 1987 .

[26]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[27]  Carlo De Michele,et al.  Extremes in Nature : an approach using Copulas , 2007 .

[28]  M. Wegkamp,et al.  Weak Convergence of Empirical Copula Processes , 2004 .

[29]  Olivier Scaillet,et al.  Testing for Equality between Two Copulas , 2006, J. Multivar. Anal..

[30]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[31]  H. Joe Multivariate models and dependence concepts , 1998 .

[32]  P. Gaenssler,et al.  Seminar on Empirical Processes , 1987 .

[33]  O. Scaillet,et al.  A Kolmogorov-Smirnov Type Test for Positive Quadrant Dependence , 2005 .

[34]  B. Rémillard,et al.  Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models , 2005 .