Dualizability and graph algebras

[1]  S. Ulam,et al.  Zur Masstheorie in der allgemeinen Mengenlehre , 1930 .

[2]  Shin-ichi Matsushita Topological Groups , 1952 .

[3]  Alfred Tarski Some Problems and Results Relevant to the Foundations of Set Theory , 1966 .

[4]  A. Mitschke,et al.  Implication algebras are 3-permutable and 3-distributive , 1971 .

[5]  Hilary A. Priestley,et al.  Ordered Topological Spaces and the Representation of Distributive Lattices , 1972 .

[6]  S. Polin Identities of finite algebras , 1976 .

[7]  K. A. Baker,et al.  Finite equational bases for finite algebras in a congruence-distributive equational class* , 1977 .

[8]  R. McKenzie Finite equational bases for congruence modular varieties , 1987 .

[9]  Brian A. Davey Duality Theory on Ten Dollars a Day , 1993 .

[10]  Brian A. Davey,et al.  Near unanimity: an obstacle to general duality theory , 1995 .

[11]  László Zádori Natural duality via a finite set of relations , 1995, Bulletin of the Australian Mathematical Society.

[12]  David M. Clark,et al.  Natural Dualities for the Working Algebraist , 1998 .

[13]  Ross Willard A Finite Basis Theorem for Residually Finite, Congruence Meet-Semidistributive Varieties , 2000, J. Symb. Log..

[14]  George F. McNulty,et al.  Full duality among graph algebras and flat graph algebras , 2001 .

[15]  Brian A. Davey,et al.  The dualisability of a quasi-variety is independent of the generating algebra , 2001 .

[16]  David M. Clark,et al.  Natural dualities for quasivarieties generated by a finite commutative ring , 2001 .

[17]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.