New results on the computation of median orders

In this paper, we deal with the following problem: given a weighted tournament T, determine a minimum-weighted set of arcs of T such that reversing these arcs makes T transitive. This problem, which is NP-hard, is a generalization of the Feedback Arc Set problem for digraphs. We improve a branch and bound method with the help of some theoretical results. Among them, a generalization of a covering relation to weighted tournaments is proposed, as well as the computation of three lower bounds of the number of arcs to reverse in T to make it transitive, or still the use of information provided by the “beginning sections” of the linear orders generated in the branch and bound tree. We give some indications upon the computational efficiency of these results.

[1]  Olivier Hudry,et al.  Encadrement de l'indice de Slater d'un tournoi à l'aide de ses scores , 1992 .

[2]  P. Slater Inconsistencies in a schedule of paired comparisons , 1961 .

[3]  L. Hubert SERIATION USING ASYMMETRIC PROXIMITY MEASURES , 1976 .

[4]  Bernard Monjardet,et al.  The median procedure in cluster analysis and social choice theory , 1981, Math. Soc. Sci..

[5]  G. Chartrand,et al.  Graphs with Forbidden Subgraphs , 1971 .

[6]  A. Guénoche,et al.  Median linear orders: Heuristics and a branch and bound algorithm , 1989 .

[7]  Bernard Monjardet Sur diverses formes de la \regle de Condorcet , 1990 .

[8]  Michel Breton,et al.  Covering relations, closest orderings and hamiltonian bypaths in tournaments , 1991 .

[9]  H. Landau On dominance relations and the structure of animal societies: III The condition for a score structure , 1953 .

[10]  J. Moon Topics on tournaments , 1968 .

[11]  Fred S. Roberts,et al.  The Reversing Number of a Digraph , 1995, Discret. Appl. Math..

[12]  W. A. Thompson,et al.  Maximum-likelihood paired comparison rankings. , 1966, Biometrika.

[13]  H. Landau On dominance relations and the structure of animal societies: I. Effect of inherent characteristics , 1951 .

[14]  J. Bermond Ordres à distance minimum d'un tournoi et graphes partiels sans circuits maximaux , 1972 .

[15]  A. Guénoche,et al.  Selecting varieties using a series of trials and a combinatorial ordering method , 1994 .

[16]  Bernard Monjardet,et al.  Tournois et ordres n~dians pour une opinion , 1973 .

[17]  Michael Jünger,et al.  Polyhedral combinatorics and the acyclic subdigraph problem , 1985 .

[18]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[19]  Alain Guénoche,et al.  How to Choose According to Partial Evaluations? , 1994, IPMU.