Special stability advantages of position-Verlet over velocity-Verlet in multiple-time step integration

We present an analysis for a simple two-component harmonic oscillator that compares the use of position-Verlet to velocity-Verlet for multiple-time step integration. The numerical stability analysis based on the impulse-Verlet splitting shows that position-Verlet has enhanced stability, in terms of the largest allowable time step, for cases where an ample separation of time scales exists. Numerical investigations confirm the advantages of the position-Verlet scheme when used for the fastest time scales of the system. Applications to a biomolecule, a solvated protein, for both Newtonian and Langevin dynamics echo these trends over large outer time-step regimes.

[1]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[2]  Mark E. Tuckerman,et al.  Molecular dynamics algorithm for multiple time scales: Systems with long range forces , 1991 .

[3]  Klaus Schulten,et al.  Generalized Verlet Algorithm for Efficient Molecular Dynamics Simulations with Long-range Interactions , 1991 .

[4]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[5]  Robert D. Skeel,et al.  Dangers of multiple time step methods , 1993 .

[6]  Masakatsu Watanabe,et al.  Dynamics of molecules with internal degrees of freedom by multiple time-step methods , 1993 .

[7]  Tamar Schlick,et al.  LIN: A new algorithm to simulate the dynamics of biomolecules by combining implicit‐integration and normal mode techniques , 1993, J. Comput. Chem..

[8]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[9]  B. Berne,et al.  A Multiple-Time-Step Molecular Dynamics Algorithm for Macromolecules , 1994 .

[10]  T. Schlick,et al.  The Langevin/implicit‐Euler/normal‐mode scheme for molecular dynamics at large time steps , 1994 .

[11]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[12]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[13]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[14]  T Schlick,et al.  Biomolecular dynamics at long timesteps: bridging the timescale gap between simulation and experimentation. , 1997, Annual review of biophysics and biomolecular structure.

[15]  Bernard R. Brooks,et al.  Recent advances in molecular dynamics simulation towards the realistic representation of biomolecules in solution , 1998 .

[16]  R. Skeel,et al.  Nonlinear Resonance Artifacts in Molecular Dynamics Simulations , 1998 .

[17]  T. Schlick,et al.  Extrapolation versus impulse in multiple-timestepping schemes. II. Linear analysis and applications to Newtonian and Langevin dynamics , 1998 .

[18]  T. Schlick,et al.  Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN , 1998 .

[19]  Robert D. Skeel,et al.  Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..

[20]  Laxmikant V. Kale,et al.  Algorithmic Challenges in Computational Molecular Biophysics , 1999 .

[21]  T. Schlick,et al.  Masking Resonance Artifacts in Force-Splitting Methods for Biomolecular Simulations by Extrapolative Langevin Dynamics , 1999 .

[22]  J. Izaguirre Longer Time Steps for Molecular Dynamics , 1999 .

[23]  Application of a Multiple Time Step Algorithm to Biomolecular Systems , 1999 .

[24]  T. Schlick Computational Molecular Biophysics Today , 1999 .

[25]  T Schlick,et al.  A-Tract bending: insights into experimental structures by computational models. , 2000, Journal of molecular biology.

[26]  Robert D. Skeel,et al.  Nonlinear Stability Analysis of Area-Preserving Integrators , 2000, SIAM J. Numer. Anal..

[27]  D. Case,et al.  Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations , 2001 .

[28]  T Schlick,et al.  Time-trimming tricks for dynamic simulations: splitting force updates to reduce computational work. , 2001, Structure.