First results from in situ transmission electron microscopy studies of all-solid-state fluoride ion batteries

[1]  Chao Luo,et al.  A carboxylate group-based organic anode for sustainable and stable sodium ion batteries , 2020 .

[2]  Jiangfeng Song,et al.  Latest research advances on magnesium and magnesium alloys worldwide , 2020, Journal of Magnesium and Alloys.

[3]  Tae-Hee Kim,et al.  Key functional groups defining the formation of Si anode solid-electrolyte interphase towards high energy density Li-ion batteries , 2020 .

[4]  T. Abe,et al.  Experimental Visualization of Interstitialcy Diffusion Pathways in Fast-Fluoride-Ion-Conducting Solid Electrolyte Ba0.6La0.4F2.4 , 2020 .

[5]  Ertan Agar,et al.  Probing Li-ion concentration in an operating lithium ion battery using in situ Raman spectroscopy , 2020 .

[6]  M. Winter,et al.  The effect of Sn substitution on the structure and oxygen activity of Na0.67Ni0.33Mn0.67O2 cathode materials for sodium ion batteries , 2020 .

[7]  R. Tao,et al.  Quantifying the 2D anisotropic displacement and strain fields in graphite-based electrode via in situ scanning electron microscopy and digital image correlation , 2020 .

[8]  J. Haruyama,et al.  Two-Phase Reaction Mechanism for Fluorination and Defluorination in Fluoride-Shuttle Batteries: A First-Principles Study. , 2019, ACS applied materials & interfaces.

[9]  S. Passerini,et al.  Ultra-thick battery electrodes for high gravimetric and volumetric energy density Li-ion batteries , 2019, Journal of Power Sources.

[10]  M. Chi,et al.  A hollow Co2SiO4 nanosheet Li-ion battery anode with high electrochemical performance and its dynamic lithiation/delithiation using in situ transmission electron microscopy technology , 2019, Applied Surface Science.

[11]  M. Obrovac,et al.  Hexagonal and monoclinic NaNi0.8Co0.15Al0.05O2 (Na-NCA) for sodium ion batteries , 2019, Journal of Power Sources.

[12]  R. Deivanayagam,et al.  Progress in development of electrolytes for magnesium batteries , 2019, Energy Storage Materials.

[13]  W. Lau,et al.  Self-chargeable sodium-ion battery for soft electronics , 2019, Nano Energy.

[14]  Irshad Mohammad,et al.  Testing Mg as an anode against BiF3 and SnF2 cathodes for room temperature rechargeable fluoride ion batteries , 2019, Materials Letters.

[15]  M. Panagopoulou,et al.  Lithiation of pure and methylated amorphous silicon: Monitoring by operando optical microscopy and ex situ atomic force microscopy , 2019, Electrochimica Acta.

[16]  Nabraj Bhattarai,et al.  In situ transmission electron microscopy observations of rechargeable lithium ion batteries , 2019, Nano Energy.

[17]  E. Maire,et al.  In situ characterization of Si-based anodes by coupling synchrotron X-ray tomography and diffraction , 2019, Nano Energy.

[18]  Xiao-dong Shen,et al.  An All‐Solid‐State Rechargeable Chloride Ion Battery , 2019, Advanced science.

[19]  T. Abe,et al.  In Situ Observation of Fluoride Shuttle Battery Reactions with Dissolution-Deposition Mechanisms by Raman Microscopy , 2019, Journal of The Electrochemical Society.

[20]  Michael Cw Kintner-Meyer,et al.  Lifecycle comparison of selected Li-ion battery chemistries under grid and electric vehicle duty cycle combinations , 2018 .

[21]  Simon V. Erhard,et al.  Inhomogeneity and relaxation phenomena in the graphite anode of a lithium-ion battery probed by in situ neutron diffraction , 2017 .

[22]  M. Fichtner,et al.  Conductivity Optimization of Tysonite-type La1-xBaxF3-x Solid Electrolytes for Advanced Fluoride Ion Battery. , 2017, ACS applied materials & interfaces.

[23]  M. Fichtner,et al.  CuF2 as Reversible Cathode for Fluoride Ion Batteries , 2017 .

[24]  Andreas Jossen,et al.  Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction , 2017 .

[25]  M. Fichtner,et al.  In situ TEM studies of micron‐sized all‐solid‐state fluoride ion batteries: Preparation, prospects, and challenges , 2016, Microscopy research and technique.

[26]  T.V.S.L. Satyavani,et al.  Effect of particle size on dc conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells , 2016 .

[27]  Yves Dube,et al.  A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures , 2016 .

[28]  A. Gross,et al.  Fluoride ion batteries: Theoretical performance, safety, toxicity, and a combinatorial screening of new electrodes , 2016 .

[29]  T. Kozlova In situ transmission electron microscopy investigations of electromigration in metals , 2015 .

[30]  F. Gschwind,et al.  Parametric investigation of room-temperature fluoride-ion batteries: assessment of electrolytes, Mg-based anodes, and BiF3-cathodes , 2015 .

[31]  E. Pohjalainen,et al.  Effect of Li4Ti5O12 Particle Size on the Performance of Lithium Ion Battery Electrodes at High C-Rates and Low Temperatures , 2015 .

[32]  S. Han,et al.  Effect of particle size on the density and ionic conductivity of Na 3 Zr 2 Si 2 PO 12 NASICON , 2015 .

[33]  C. Villevieille Electrochemical characterization of rechargeable lithium batteries , 2015 .

[34]  W. Q. Walker,et al.  Rechargeable lithium batteries for aerospace applications , 2015 .

[35]  Remus Teodorescu,et al.  A comparative study of lithium ion to lead acid batteries for use in UPS applications , 2014, 2014 IEEE 36th International Telecommunications Energy Conference (INTELEC).

[36]  M. Fichtner,et al.  Development of new anode composite materials for fluoride ion batteries , 2014 .

[37]  Michael Bruns,et al.  Chloride ion battery: A new member in the rechargeable battery family , 2014 .

[38]  M. Fichtner,et al.  Nanostructured Fluorite-Type Fluorides As Electrolytes for Fluoride Ion Batteries , 2013 .

[39]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[40]  M. Fichtner,et al.  Batteries based on fluoride shuttle , 2011 .

[41]  Di Chen,et al.  In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid , 2011 .

[42]  John B. Goodenough,et al.  Challenges for rechargeable batteries , 2011 .

[43]  G. Pistoia,et al.  APPLICATIONS – PORTABLE | Portable Devices: Batteries , 2009 .

[44]  Glenn G. Amatucci,et al.  Structure and Electrochemistry of Copper Fluoride Nanocomposites Utilizing Mixed Conducting Matrices , 2007 .

[45]  Jean-Marie Tarascon,et al.  Dendrite short-circuit and fuse effect on Li/polymer/Li cells , 2006 .

[46]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[47]  C. Julien,et al.  Materials for lithium-ion batteries , 2000 .

[48]  W. Baukal Über reaktionsmöglichkeiten in elektroden von festkörperbatterien , 1974 .

[49]  T. Armstrong Northern Affairs in the Soviet Union , 1964 .