Performance of 3-D Surface Deformation Estimation for Simultaneous Squinted SAR Acquisitions

This paper addresses the performance in the retrieval of 3-D mean deformation maps by exploiting simultaneous or quasi-simultaneous squinted synthetic aperture radar (SAR) interferometric acquisitions in a repeat-pass scenario. In multisatellite or multibeam low earth observation missions, the availability of two (or more) lines of sight (LOSs) allows the simultaneous acquisition of SAR images with different squint angles, hence improving the sensitivity to the north–south component of the deformation. Due to the simultaneity of the acquisitions, the troposphere will be highly correlated and, therefore, will tend to cancel out when performing the differential measurement between the interferograms obtained with the different LOSs, hence resulting in a practically troposphere-free estimation of the along-track deformation measurement. In practice, however, the atmospheric noise in the differential measurement will increase for increasing angular separations. This paper expounds the mathematical framework to derive the performance by properly considering the correlation of the atmospheric delays between the simultaneous acquisitions. To that aim, the hybrid Cramér–Rao bound is exploited making use of the autocorrelation function of the troposphere. Some performance examples are presented in the frame of future spaceborne SAR missions at C and L band.

[1]  Stefano Tebaldini,et al.  On the Exploitation of Target Statistics for SAR Interferometry Applications , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Malcolm Davidson,et al.  SAOCOM-CS - A passive companion to SAOCOM for single-pass L-band SAR interferometry , 2014 .

[3]  Stefano Tebaldini,et al.  On the Phase Calibration by Multisquint Analysis in TOPSAR and Stripmap Interferometry , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Hyung-Sup Jung,et al.  Theoretical Accuracy of Along-Track Displacement Measurements from Multiple-Aperture Interferometry (MAI) , 2014, Sensors.

[5]  Adriano Camps,et al.  Dual-beam interferometry for ocean surface current vector mapping , 2001, IEEE Trans. Geosci. Remote. Sens..

[6]  R. Scheiber,et al.  Interferometry with TOPS: coregistration and azimuth shifts , 2014 .

[7]  Hyung-Sup Jung,et al.  Simulation of the SuperSAR Multi-Azimuth Synthetic Aperture Radar Imaging System for Precise Measurement of Three-Dimensional Earth Surface Displacement , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 1999, Remote Sensing.

[9]  Josef Mittermayer,et al.  The TerraSAR-X Staring Spotlight Mode Concept , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Marc Rodriguez-Cassola,et al.  Experimental Bidirectional SAR ATI acquisitions of the ocean surface with TanDEM-X , 2014 .

[11]  Alberto Moreira,et al.  Coregistration of interferometric SAR images using spectral diversity , 2000, IEEE Trans. Geosci. Remote. Sens..

[12]  Michael Eineder,et al.  Toward Operational Compensation of Ionospheric Effects in SAR Interferograms: The Split-Spectrum Method , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Kanika Goel,et al.  Measuring 3-D Surface Motion With Future SAR Systems Based on Reflector Antennae , 2016, IEEE Geoscience and Remote Sensing Letters.

[14]  Fabio Rocca,et al.  Diameters of the orbital tubes in long-term interferometric SAR surveys , 2004, IEEE Geoscience and Remote Sensing Letters.

[15]  Marwan Younis,et al.  Tandem-L: Main results of the phase a feasibility study , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[16]  Francesco De Zan,et al.  Ionospheric Phase Screen Compensation for the Sentinel-1 TOPS and ALOS-2 ScanSAR Modes , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[17]  S. Grossmann The Spectrum of Turbulence , 2003 .

[18]  Peter M. Schultheiss,et al.  Array shape calibration using sources in unknown locations-Part I: Far-field sources , 1987, IEEE Trans. Acoust. Speech Signal Process..

[19]  H. Zebker,et al.  Measuring two‐dimensional movements using a single InSAR pair , 2006 .

[20]  Andreas Reigber,et al.  Estimation of the Surface Velocity Field of the Aletsch Glacier Using Multibaseline Airborne SAR Interferometry , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Marco Schwerdt,et al.  On the Processing of Very High Resolution Spaceborne SAR Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Gerhard Krieger,et al.  Bistatic TerraSAR-X/F-SAR Spaceborne–Airborne SAR Experiment: Description, Data Processing, and Results , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Urs Wegmüller,et al.  L-band multistatic radar interferometry for 3D deformation vector decomposition , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[24]  Joong-Sun Won,et al.  An Improvement of the Performance of Multiple-Aperture SAR Interferometry (MAI) , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[25]  T. Wright,et al.  Toward mapping surface deformation in three dimensions using InSAR , 2004 .

[26]  Jordi J. Mallorquí,et al.  Estimation of azimuth phase undulations with multisquint processing in airborne interferometric SAR images , 2003, IEEE Trans. Geosci. Remote. Sens..

[27]  A. Kolmogorov Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[28]  Alberto Moreira,et al.  Companion SAR constellations for single-pass interferometric applications: The SESAME mission , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[29]  Marc Rodriguez-Cassola,et al.  Repeat-pass interferometric experiments with the Tandem-X constellation for accurate along-track motion estimation , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[30]  Gerhard Krieger,et al.  Bidirectional SAR Imaging Mode , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Michael Eineder,et al.  Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems , 2005, IEEE Geoscience and Remote Sensing Letters.

[32]  Robert Wood,et al.  The seasonal cycle of planetary boundary layer depth determined using COSMIC radio occultation data , 2013 .

[33]  Jordi J. Mallorquí,et al.  Refined estimation of time-varying baseline errors in airborne SAR interferometry , 2006, IEEE Geoscience and Remote Sensing Letters.

[34]  Konstantinos Papathanassiou,et al.  Correcting Distortion of Polarimetric SAR Data Induced by Ionospheric Scintillation , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Fabio Rocca,et al.  Modeling Interferogram Stacks , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Stefano Tebaldini,et al.  Hybrid CramÉr–Rao Bounds for Crustal Displacement Field Estimators in SAR Interferometry , 2007, IEEE Signal Processing Letters.

[37]  Marc Rodriguez-Cassola,et al.  On the Dependence of Delta-k Efficiency on Multilooking , 2015, IEEE Geoscience and Remote Sensing Letters.