Volume Reconstruction from Slices

We propose a variational approach for the reconstruction of a volume from slices. The reconstructed set is obtained as a minimizer of a geometric regularity criterion, either the perimeter or the Willmore energy, with inclusion-exclusion constraints associated with the cross sections. We propose a phase field approximation of this model, and we analyze it when the regularity criterion is the perimeter. We derive simple and accurate numerical schemes for both the perimeter-based and the Willmore-based formulations, and we illustrate with several numerical examples the performances of our approach, which proves to be effective for a large category of constraints.

[1]  Ioannis A. Kakadiaris,et al.  Building 3D surface networks from 2D curve networks with application to anatomical modeling , 2005, The Visual Computer.

[2]  Xinfu Chen,et al.  Generation and propagation of interfaces for reaction-diffusion equations , 1992 .

[3]  A. B. Ekoule,et al.  A triangulation algorithm from arbitrary shaped multiple planar contours , 1991, TOGS.

[4]  E. D. Giorgi,et al.  Some remarks on Γ-convergence and least squares method , 1991 .

[5]  G. Bellettini,et al.  On the approximation of the elastica functional in radial symmetry , 2005 .

[6]  Kenneth R. Sloan,et al.  Surfaces from contours , 1992, TOGS.

[7]  Francesco Maggi,et al.  Sets of Finite Perimeter and Geometric Variational Problems: SETS OF FINITE PERIMETER , 2012 .

[8]  Kalpathi R. Subramanian,et al.  Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions , 2001, Proceedings International Conference on Shape Modeling and Applications.

[9]  Haijun Wu,et al.  A Posteriori Error Estimates and an Adaptive Finite Element Method for the Allen–Cahn Equation and the Mean Curvature Flow , 2005, J. Sci. Comput..

[10]  Jacques-Olivier Lachaud,et al.  Regularization of Discrete Contour by Willmore Energy , 2011, Journal of Mathematical Imaging and Vision.

[11]  Andreas Prohl,et al.  Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits , 2003, Math. Comput..

[12]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[13]  Yoshihiro Tonegawa,et al.  Phase field model with a variable chemical potential , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  Tao Ju,et al.  Topology-constrained surface reconstruction from cross-sections , 2015, ACM Trans. Graph..

[15]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[16]  James F. O'Brien,et al.  Shape transformation using variational implicit functions , 1999, SIGGRAPH Courses.

[17]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[18]  Yibao Li,et al.  An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation , 2010, Comput. Math. Appl..

[19]  Jian Zhang,et al.  Numerical Studies of Discrete Approximations to the Allen--Cahn Equation in the Sharp Interface Limit , 2009, SIAM J. Sci. Comput..

[20]  Charles M. Elliott,et al.  CONVERGENCE OF NUMERICAL SOLUTIONS TO THE ALLEN-CAHN EQUATION , 1998 .

[21]  Samir Akkouche,et al.  Fast Surface Reconstruction from Contours using Implicit Surfaces , .

[22]  Andrea Braides Γ-convergence for beginners , 2002 .

[23]  Lu Liu,et al.  Surface Reconstruction From Non‐parallel Curve Networks , 2008, Comput. Graph. Forum.

[24]  S. Osher,et al.  Fast surface reconstruction using the level set method , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[25]  Roger Moser,et al.  A Higher Order Asymptotic Problem Related to Phase Transitions , 2005, SIAM J. Math. Anal..

[26]  Yoshihiro Tonegawa,et al.  A singular perturbation problem with integral curvature bound , 2007 .

[27]  M. Cani,et al.  Reconstruction Implicite de Surfaces 3D à partir de Régions 2D dans des Plans Parallèles , 2009 .

[28]  Qiang Du,et al.  STABILITY ANALYSIS AND APPLICATION OF THE EXPONENTIAL TIME DIFFERENCING SCHEMES , 2022 .

[29]  Behzad Shariat,et al.  Skeletal implicit surface reconstruction from sections for flexible body simulation , 2001, Proceedings Fifth International Conference on Information Visualisation.

[30]  Elie Bretin,et al.  Phase-field approximations of the Willmore functional and flow , 2013, Numerische Mathematik.

[31]  Jaemin Shin,et al.  Computer Vision and Image Understanding Three-dimensional Volume Reconstruction from Slice Data Using Phase-field Models , 2022 .

[32]  Jean-Daniel Boissonnat,et al.  Shape reconstruction from planar cross sections , 1988, Comput. Vis. Graph. Image Process..

[33]  Henry Fuchs,et al.  Optimal surface reconstruction from planar contours , 1977, SIGGRAPH.

[34]  Chert,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 2004 .

[35]  Eric Keppel,et al.  Approximating Complex Surfaces by Triangulation of Contour Lines , 1975, IBM J. Res. Dev..

[36]  Matthias Röger,et al.  On a Modified Conjecture of De Giorgi , 2006 .

[37]  Min Chen,et al.  A New Approach to the Construction of Surfaces from Contour Data , 1994, Comput. Graph. Forum.

[38]  Chang-Ock Lee,et al.  Accurate Surface Reconstruction in 3D Using Two-dimensional Parallel Cross Sections , 2015, Journal of Mathematical Imaging and Vision.

[39]  G. Bellettini,et al.  Anisotropic motion by mean curvature in the context of Finsler geometry , 1996 .

[40]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[41]  P. Bates,et al.  International Journal of C 2009 Institute for Scientific Numerical Analysis and Modeling Computing and Information Numerical Analysis for a Nonlocal Allen-cahn Equation , 2022 .

[42]  Francesco Maggi Sets of Finite Perimeter and Geometric Variational Problems: Tangential differentiability and the area formula , 2012 .