The theory of the nonlinear Boltzmann equation for Maxwell molecules in Fourier representation

We study the Cauchy problem for the spatially homogenem Boltzmann equation for true Maxwell molecules. Using the Fourier representation introduced byBobylev [Bo75],we give a simplified proof of a result proved byTanaka [Ta78].Moreover, we show by means of simple geometric properties, that Tanaka functional is an entropy decreasing functional for the Boltzmann equation for Maxwell molecules.

[1]  Raphael Aronson,et al.  Theory and application of the Boltzmann equation , 1976 .

[2]  Hiroshi Tanaka An inequality for a functional of probability distributions and its application to Kac's one-dimensional model of a Maxwellian gas , 1973 .

[3]  Hiroshi Tanaka Probabilistic treatment of the Boltzmann equation of Maxwellian molecules , 1978 .

[4]  Leif Arkeryd,et al.  On the Boltzmann equation , 1972 .

[5]  M. Fréchet Sur les tableaux de correlation dont les marges sont donnees , 1951 .

[6]  S. Kaniel,et al.  The Boltzmann equation , 1978 .

[7]  Tommy Gustafsson,et al.  Lp-estimates for the nonlinear spatially homogeneous Boltzmann equation , 1986 .

[8]  Tommy Gustafsson,et al.  Global Lp-properties for the spatially homogeneous Boltzmann equation , 1988 .

[9]  Nicola Bellomo,et al.  Mathematical Topics In Nonlinear Kinetic Theory , 1988 .

[10]  Leif Arkeryd,et al.  Stability in L1 for the spatially homogenous Boltzmann equation , 1988 .

[11]  Bernt Wennberg,et al.  Stability and exponential convergence in L(p) for the spatially homogeneous Boltzmann equation , 1993 .

[12]  H. Murata,et al.  An inequality for certain functional of multidimensional probability distributions , 1974 .

[13]  R. Laha Probability Theory , 1979 .

[14]  B. Wennberg Stability and exponential convergence for the Boltzmann equation , 1995 .

[15]  Michel Loève,et al.  Probability Theory I , 1977 .

[16]  M. Rasetti FUNDAMENTALS OF MAXWELL KINETIC-THEORY OF A SIMPLE MONOATOMIC GAS - TRUESDELL,C, MUNCASTER,RG , 1982 .

[17]  W. Whitt Bivariate Distributions with Given Marginals , 1976 .

[18]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[19]  G. Toscani,et al.  On the generalization of the Boltzmann H-theorem for a spatially homogeneous Maxwell gas , 1992 .

[20]  Leif Arkeryd,et al.  Intermolecular forces of infinite range and the Boltzmann equation , 1981 .

[21]  G. Toscani Convergence towards equilibrium for a gas of Maxwellian Pseudomolecules , 1992 .

[22]  T. Carleman,et al.  Problèmes mathématiques dans la théorie cinétique des gaz , 1957 .

[23]  P. Lions,et al.  On the Cauchy problem for Boltzmann equations: global existence and weak stability , 1989 .

[24]  E. Wild On Boltzmann's equation in the kinetic theory of gases , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  Pierre Degond,et al.  THE FOKKER-PLANCK ASYMPTOTICS OF THE BOLTZMANN COLLISION OPERATOR IN THE COULOMB CASE , 1992 .