Stable NCNgNSi (Ng=Kr, Xe, Rn) Compounds with Covalently Bound C-Ng-N Unit: Possible Isomerization of NCNSi through the Release of the Noble Gas Atom.

Although the noble gas (Ng) compounds with either Ng-C or Ng-N bonds have been reported in the literature, compounds containing both bonds are not known. The first set of systems having a C-Ng-N bonding unit is predicted herein through the analysis of stability and bonding in the NCNgNSi (Ng=Kr-Rn) family. While the Xe and Rn inserted analogues are thermochemically stable with respect to all dissociation channels, but for the one producing CNSiN and free Ng, NCKrNSi has another additional three-body dissociation channel, NCKrNSi→CN+Kr+NSi, which is exergonic by -9.8 kcal mol-1 at 298 K. This latter dissociation can be hindered by lowering the temperature. Moreover, the NCNgNSi→Ng+CNSiN dissociation is also kinetically prohibited by a quite high free energy barrier ranging from 25.2 to 39.3 kcal mol-1 , with a gradual increase in going from Kr to Rn. Therefore, these compounds are appropriate candidates for experimental realization. A detailed bonding analysis by employing natural bond orbital, electron density, energy decomposition, and adaptive natural density partitioning analyses indicates that both Ng-N and C-Ng bonds in the title compounds are covalent in nature. In fact, the latter analysis indicates the presence of delocalized 3c-3e σ-bond within the C-Ng-N moiety and a totally delocalized 5c-2e σ-bond in these compounds. This is an unprecedented bonding characteristic in the sense that the bonding pattern in Ng inserted compounds is generally represented as the presence of covalent bond in one side of Ng, and the ionic interaction in the other side. Further, the dissociation of Ng from NCNgNSi facilitates the formation of a higher energy isomer of NCNSi, CNSiN, which cannot be formed from bare NCNSi as such, because of the very high free energy barrier associated with the isomeric transformation. Therefore, in the presence of Ng atoms it might be possible to detect the high energy isomer.

[1]  M. Räsänen,et al.  On theoretical predictions of noble-gas hydrides. , 2006, The Journal of chemical physics.

[2]  Pratim K Chattaraj,et al.  Stability of noble-gas-bound SiH₃⁺ clusters. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[3]  G. Schrobilgen,et al.  Fluoro(nitrile)xenon(II) cations, RC≡N-XeF+ AsF6− (R=H, CH3, CH2F, C2H5, C2F5, C3F7, or C6F5); Novel examples of xenon-nitrogen bonds and 129Xe-13C, 129Xe-1H, and 129Xe-14N nuclear spin-spin couplings , 1987 .

[4]  D. Kennepohl,et al.  The XeN(SO2F)2+ and F[XeN(SO2F)2+ cations: synthesis and x-ray structure of XeN(SO2F)2+Sb3F16- and Raman and multinuclear magnetic resonance studies of the AsF6- and Sb3F16- compounds , 1986 .

[5]  R. Kaiser,et al.  Spectroscopic and structural characterization of three silaisocyanides: exploring an elusive class of reactive molecules at high resolution. , 2015, Chemical communications.

[6]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[7]  Jan Lundell,et al.  Fluorine-free organoxenon chemistry: HXeCCH, HXeCC, and HXeCCXeH. , 2003, Journal of the American Chemical Society.

[8]  M. Gerry,et al.  XeCu covalent bonding in XeCuF and XeCuCl, characterized by fourier transform microwave spectroscopy supported by quantum chemical calculations. , 2006, Journal of the American Chemical Society.

[9]  Pratim K Chattaraj,et al.  Ab initio study on the stability of Ng(n)Be₂N₂, Ng(n)Be₃N₂ and NgBeSiN₂ clusters. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[10]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[11]  Pratim K. Chattaraj,et al.  Exploring the Nature of Silicon-Noble Gas Bonds in H3SiNgNSi and HSiNgNSi Compounds (Ng = Xe, Rn) , 2015, International journal of molecular sciences.

[12]  Gernot Frenking,et al.  Energy decomposition analysis , 2020, Catalysis from A to Z.

[13]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[14]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[15]  Jan Lundell,et al.  Organo-noble-gas hydride compounds HKrCCH, HXeCCH, HXeCC, and HXeCCXeH: formation mechanisms and effect of 13C isotope substitution on the vibrational properties. , 2004, The Journal of chemical physics.

[16]  Sreyan Ghosh,et al.  Structure and stability of noble gas bound EX3+ compounds (E = C, Ge, Sn, Pb; X = H, F, Cl, Br) , 2016, J. Comput. Chem..

[17]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[18]  R. Gerber Formation of novel rare-gas molecules in low-temperature matrices. , 2004, Annual review of physical chemistry.

[19]  M. Räsänen,et al.  Matrix-isolation and ab initio study of HKrCCCl and HXeCCCl. , 2015, The Journal of chemical physics.

[20]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[21]  Jan Lundell,et al.  Chemical compounds formed from diacetylene and rare-gas atoms: HKrC4H and HXeC4H. , 2003, Journal of the American Chemical Society.

[22]  P. Pyykko CHEMISTRY: Noblesse Oblige , 2000 .

[23]  P. Taylor,et al.  A diagnostic for determining the quality of single‐reference electron correlation methods , 2009 .

[24]  Ashutosh Gupta,et al.  A coupled‐cluster study on the noble gas binding ability of metal cyanides versus metal halides (metal = Cu, Ag, Au) , 2015, J. Comput. Chem..

[25]  Hanno Essén,et al.  The characterization of atomic interactions , 1984 .

[26]  Gernot Frenking,et al.  The EDA Perspective of Chemical Bonding , 2014 .

[27]  H. Stoll,et al.  Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements , 2003 .

[28]  Liu Shu,et al.  Conceptual Density Functional Theory and Some Recent Developments , 2009 .

[29]  Mariusz Klobukowski,et al.  Well-tempered Gaussian basis sets for the calculation of matrix Hartree-Fock wavefunctions , 1993 .

[30]  Vladimir I Feldman,et al.  Experimental evidence for the formation of HXeCCH: the first hydrocarbon with an inserted rare-gas atom. , 2003, Journal of the American Chemical Society.

[31]  D. Desmarteau,et al.  Xenon-nitrogen bonds. The synthesis and characterization of [imidobis(sulfuryl fluoride)]xenon(II) derivatives Xe[N(SO2F)2]2, FXeN(SO2F)2 and [(FSO2)2NXe]2F+AsF6- and the radical .cntdot.N(SO2F)2 , 1981 .

[32]  Lorenza Operti,et al.  Xenon-nitrogen chemistry: gas-phase generation and theoretical investigation of the xenon-difluoronitrenium ion F2N-Xe+. , 2011, Chemistry.

[33]  G. Schrobilgen,et al.  The fluoro(perfluoropyridine)xenon(II) cations, C5F5N–XeF+ and 4-CF3C5F4N–XeF+; novel examples of xenon as an aromatic substituent and of xenon–nitrogen bonding , 1988 .

[34]  P. Chattaraj,et al.  MNgCCH (M = Cu, Ag, Au; Ng = Xe, Rn): The First Set of Compounds with M-Ng-C Bonding Motif. , 2017, The journal of physical chemistry. A.

[35]  K. O. Christe Die Renaissance der Edelgaschemie , 2001 .

[36]  M Elango,et al.  Multiphilic descriptor for chemical reactivity and selectivity. , 2007, The journal of physical chemistry. A.

[37]  Gernot Frenking,et al.  Experimental and theoretical studies of the infrared spectra and bonding properties of NgBeCO₃ and a comparison with NgBeO (Ng = He, Ne, Ar, Kr, Xe). , 2015, The journal of physical chemistry. A.

[38]  W. Grochala Atypical compounds of gases, which have been called 'noble'. , 2007, Chemical Society reviews.

[39]  M. Räsänen,et al.  Matrix-isolation and computational study of the HKrCCH⋯HCCH complex , 2015 .

[40]  Frank Weinhold,et al.  Natural bond orbital analysis of near‐Hartree–Fock water dimer , 1983 .

[41]  Khuong Q. Vuong,et al.  Recent advances in organometallic alkane and noble gas complexes , 2009 .

[42]  F. Bickelhaupt,et al.  Bonding of xenon hydrides. , 2009, Journal of Physical Chemistry A.

[43]  M. Räsänen,et al.  Experimental and theoretical study of the HXeI⋯HCl and HXeI⋯HCCH complexes. , 2015, The Journal of chemical physics.

[44]  Pekka Pyykkö,et al.  Molecular single-bond covalent radii for elements 1-118. , 2009, Chemistry.

[45]  Elfi Kraka,et al.  Chemical Bonds without Bonding Electron Density — Does the Difference Electron‐Density Analysis Suffice for a Description of the Chemical Bond? , 1984 .

[46]  Jun Li,et al.  Significant interactions between uranium and noble-gas atoms: coordination of the UO2+ cation by Ne, Ar, Kr, and Xe atoms. , 2004, Angewandte Chemie.

[47]  E. Baerends,et al.  Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry , 2007 .

[48]  Debashree Manna,et al.  Theoretical prediction of noble gas inserted thioformyl cations: HNgCS⁺ (Ng = He, Ne, Ar, Kr, and Xe). , 2015, The journal of physical chemistry. A.

[49]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[50]  Evert Jan Baerends,et al.  The zero order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. , 1996 .

[51]  Alejandro Toro-Labbé,et al.  Theoretical support for using the Δf(r) descriptor , 2006 .

[52]  Arvi Rauk,et al.  On the calculation of multiplet energies by the hartree-fock-slater method , 1977 .

[53]  L. Khriachtchev,et al.  Matrix-isolation and theoretical study of the HXeCCXeH⋯HCCH and HXeCC⋯HCCH complexes , 2017 .

[54]  Stefano Borocci,et al.  Complexes of XeHXe⁺ with simple ligands: a theoretical investigation on (XeHXe⁺)L (L = N₂, CO, H₂O, NH₃). , 2015, The journal of physical chemistry. A.

[55]  H. Frohn,et al.  [C6F5Xe]+ and [C6F5XeNCCH3]+ salts of the weakly coordinating borate anions, [BY4]- (Y = CN, CF3, or C6F5). , 2008, Inorganic chemistry.

[56]  Ranajit Saha,et al.  Comparative Study on the Noble-Gas Binding Ability of BeX Clusters (X = SO4, CO3, O). , 2015, The journal of physical chemistry. A.

[57]  Richard Dronskowski,et al.  A stable compound of helium and sodium at high pressure. , 2013, Nature chemistry.

[58]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[59]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[60]  Jan Lundell,et al.  Insertion of noble gas atoms into cyanoacetylene: an ab initio and matrix isolation study. , 2006, The journal of physical chemistry. A.

[61]  Jan Lundell,et al.  Matrix-isolation and ab initio study of HNgCCF and HCCNgF molecules (Ng = Ar, Kr, and Xe). , 2010, The journal of physical chemistry. A.

[62]  Sukanta Mondal,et al.  10-π-Electron arenes à la carte: structure and bonding of the [E-(CnHn)-E](n-6) (E = Ca, Sr, Ba; n = 6-8) complexes. , 2016, Physical chemistry chemical physics : PCCP.

[63]  G. Schrobilgen,et al.  Solid-state and solution rearrangements of F3S[triple bond]NXeF+ leading to the F4S=NXe+ cation; syntheses, HF solvolyses, and structural characterizations of [F4S=NXe][AsF6] and[F4S=NH2][AsF6]. , 2009, Journal of the American Chemical Society.

[64]  E. G. Hope Coordination chemistry of the noble gases and noble gas fluorides , 2013 .

[65]  Gary J. Schrobilgen,et al.  Synthesis, multinuclear magnetic resonance and Raman study of nitrogen-15-enriched Xe[N(SO2F)2]2, an example of xenon-nitrogen bonding. Solution behavior of [15N]-F[XeN(SO2F)2]2+AsF6- , 1983 .

[66]  K. Christe A Renaissance in Noble Gas Chemistry. , 2001, Angewandte Chemie.

[67]  Donald G. Truhlar,et al.  Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions , 2004 .

[68]  Gary J. Schrobilgen,et al.  The fluoro(hydrogen cyanide)xenon(II) cation. Preparation of HC.tplbond.NXeF+AsF6-: a multinuclear magnetic resonance and Raman spectroscopic study , 1992 .

[69]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[70]  Evert Jan Baerends,et al.  Geometry optimizations in the zero order regular approximation for relativistic effects. , 1999 .

[71]  S. McDowell Studies of Neutral Rare-Gas Compounds and their Non-Covalent Interactions with Other Molecules , 2006 .

[72]  Markku Räsänen,et al.  Halogenated xenon cyanides ClXeCN, ClXeNC, and BrXeCN. , 2012, Inorganic chemistry.

[73]  Alexander I Boldyrev,et al.  Developing paradigms of chemical bonding: adaptive natural density partitioning. , 2008, Physical chemistry chemical physics : PCCP.

[74]  Markku Räsänen,et al.  Noble-gas hydrides: new chemistry at low temperatures. , 2009, Accounts of chemical research.

[75]  G. Schrobilgen The fluoro(perfluoroalkylnitrile)noble-gas(II) cations, RFCN–NgF+(Ng = Kr or Xe; RF= CF3, C2F5, n-C3F7), and the fluoro(trifluoro-s-triazine)xenon(II) cation, s-C3F3N2N–XeF+; novel noble gas–nitrogen bonds , 1988 .

[76]  P. Geerlings,et al.  Conceptual density functional theory. , 2003, Chemical reviews.

[77]  G. Frenking,et al.  Divalent carbon(0) chemistry, part 1: Parent compounds. , 2008, Chemistry.

[78]  Dieter Cremer,et al.  Chemische Bindungen ohne Bindungselektronendichte -reicht die Differenzdichteanalyse zur Bindungsbeschreibung aus?† , 1984 .

[79]  Jan Lundell,et al.  A gate to organokrypton chemistry: HKrCCH. , 2003, Journal of the American Chemical Society.

[80]  T. Ghanty,et al.  Prediction of a neutral noble gas compound in the triplet state. , 2015, Chemistry.

[81]  Wei-Ping Hu,et al.  Benchmark of density functional theory methods on the prediction of bond energies and bond distances of noble-gas containing molecules. , 2011, The Journal of chemical physics.

[82]  M. Gerken The impact of multi-NMR spectroscopy on the development of noble-gas chemistry , 2000 .

[83]  Alejandro Toro-Labbé,et al.  New dual descriptor for chemical reactivity. , 2005, The journal of physical chemistry. A.

[84]  Wei-Ping Hu,et al.  On the stability of noble gas molecules , 2007 .

[85]  J. Foropoulos,et al.  Bis[bis(trifluoromethanesulfonyl)imido]xenon: a new compound possessing xenon-nitrogen bonds , 1982 .

[86]  G. Frenking,et al.  Towards a rigorously defined quantum chemical analysis of the chemical bond in donor–acceptor complexes☆ , 2003 .

[87]  Keiji Morokuma,et al.  Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity , 1977 .

[88]  Evert Jan Baerends,et al.  Relativistic regular two-component Hamiltonians. , 1996 .

[89]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[90]  Clark R. Landis,et al.  NBO 6.0: Natural bond orbital analysis program , 2013, J. Comput. Chem..

[91]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[92]  D. Desmarteau,et al.  Fluoro[imidobis(sulphuryl fluoride)]xenon. An example of a xenon–nitrogen bond , 1974 .

[93]  Gas-Phase Ion Chemistry of the Noble Gases: Recent Advances and Future Perspectives , 2011, European journal of mass spectrometry.

[94]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.