Spectral test of the MIXMAX random number generators

Abstract An important statistical test on the pseudo-random number generators is called the spectral test. The test is aimed at answering the question of distribution of the generated pseudo-random vectors in dimensions d that are larger than the genuine dimension of a generator N. In particular, the default MIXMAX generators have various dimensions: N = 8 , 17 , 240 and higher. Therefore the spectral test is important to perform in dimensions d > 8 for N = 8 generator, d > 17 for N = 17 and d > 240 for N = 240 generator. These tests have been performed by L’Ecuyer and collaborators. When d > N the vectors of the generated numbers fall into the parallel hyperplanes and the distances between them can be larger than the genuine “resolution” of the MIXMAX generators, which is l = 2 − 61 . The aim of this article is to further study the spectral properties of the MIXMAX generators, to investigate the dependence of the spectral properties of the MIXMAX generators as a function of their internal parameters and in particular their dependence on the parameter m. We found that the best spectral properties are realized when m is between 224 and 236, a range which is inclusive of the value of the N = 17 generator. We also provide the alternative parameters for the generators, N = 8 and N = 240 with m in this optimized range.

[1]  G. Savvidy,et al.  Exponential decay of correlations functions in MIXMAX generator of pseudorandom numbers , 2018 .

[2]  Lothar Afflerbach The sub-lattice structure of linear congruential random number generators , 1986 .

[3]  Lih-Yuan Deng Uniform Random Numbers , 2005 .

[4]  Pierre L’Ecuyer,et al.  Spectral Analysis of the MIXMAX Random Number Generators , 2017, INFORMS J. Comput..

[5]  Joel N. Franklin Equidistribution of Matrix-Power Residues Modulo One , 1964 .

[6]  Konstantin G. Savvidy,et al.  The MIXMAX random number generator , 2014, Comput. Phys. Commun..

[7]  D. V. Anosov,et al.  Geodesic flows on closed Riemann manifolds with negative curvature , 1969 .

[8]  R. R. Coveyou,et al.  Fourier Analysis of Uniform Random Number Generators , 1967, JACM.

[9]  E. Kreuzfelder,et al.  Briefe an die Redaktion , 1981, physiopraxis.

[10]  Holger Grothe,et al.  Matrix generators for pseudo-random vector generation , 1987 .

[11]  W. A. Beyer,et al.  The lattice structure of multiplicative congruential pseudo-random vectors , 1971 .

[12]  G. Savvidy,et al.  Spectrum and entropy of C-systems MIXMAX random number generator , 2015, 1510.06274.

[13]  G. Marsaglia Random numbers fall mainly in the planes. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[15]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[16]  A. Görlich,et al.  Distribution of periodic trajectories of C-K systems MIXMAX pseudorandom number generator , 2017 .

[17]  Ya. G. Sinai,et al.  On the Notion of Entropy of a Dynamical System , 2010 .

[18]  G. Savvidy,et al.  On the Monte Carlo simulation of physical systems , 1991 .

[19]  Pierre L'Ecuyer,et al.  TestU01: A C library for empirical testing of random number generators , 2006, TOMS.

[21]  Shu Tezuka,et al.  Uniform Random Numbers , 1995 .

[22]  A. Shiryayev New Metric Invariant of Transitive Dynamical Systems and Automorphisms of Lebesgue Spaces , 1993 .

[23]  H. Grothe,et al.  The lattice structure of pseudo-random vectors generated by matrix generators , 1988 .

[24]  Pierre L'Ecuyer,et al.  Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators , 1999, Oper. Res..

[25]  G. Marsaglia,et al.  Random Number Generators , 2003 .

[26]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[27]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .