If Deterministic and Nondeterministic Space Complexities are Equal for log log n, then they are also Equal for log n

It is well known that for any „well behaved“ space function L(n) ≥ log n if DSPACE(L(n)) = NSPACE(L(n)) then also DSPACE(H(n)) = NSPACE(H(n)) for all „well behaved“ functions H(n) ≥ L(n). The aim of this paper is to show that also if DSPACE(log log n) = NSPACE(log log n) then L = NL (i.e. DSPACE(log n) = NSPACE(log n)).

[1]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[2]  Michael Sipser,et al.  Halting space-bounded computations , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[3]  W Narkiewicz Number Theory , 1984 .

[4]  Ravi Kannan,et al.  Alternation and the power of nondeterminism , 1983, STOC.

[5]  Richard Edwin Stearns,et al.  Memory bounds for recognition of context-free and context-sensitive languages , 1965, SWCT.

[6]  Burkhard Monien,et al.  On the LBA Problem , 1981, FCT.

[7]  Andrzej Szepietowski,et al.  Remarks on Languages Acceptable in log n Space , 1988, Inf. Process. Lett..