Economical Covers with Geometric Applications

Given a hypergraph H, a cover of H is a collection of edges whose union is the set of vertices; the minimal number of edges in a cover is the covering number cov(H) of H. The maximal codegree ∆2(H) is the maximal number of edges containing two fixed vertices of H. For D = 1, 2, . . ., let HD be a D-regular k-uniform hypergraph on n vertices, where k and n are functions of D. Among other results, we shall prove that if ∆2(HD) = o(D/e logD) and k = o(logD) then cov(HD) = (1 + o(1))n/k; this extends the known result that this holds for fixed k. On the other hand, if k ≥ 4 logD then cov(HD) ≥ Ω(nk log( k log D )) may hold even when ∆2(HD) = 1. Several extensions and variants are also obtained, as well as the following geometric application. The minimum number of lines required to separate n random points in the unit square is, almost surely, Θ(n/(log n))).

[1]  Jeong Han Kim On Brooks' Theorem for Sparse Graphs , 1995, Comb. Probab. Comput..

[2]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[3]  David A. Grable,et al.  More-Than-Nearly-Perfect Packings and Partial Designs , 1999, Comb..

[4]  János Komlós,et al.  A Dense Infinite Sidon Sequence , 1981, Eur. J. Comb..

[5]  N. Alon,et al.  The Probabilistic Method, Second Edition , 2000 .

[6]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[7]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[8]  V. Vu New bounds on nearly perfect matchings in hypergraphs: higher codegrees do help , 2000 .

[9]  Bruce A. Reed,et al.  A Bound on the Total Chromatic Number , 1998, Comb..

[10]  Jeff Kahn,et al.  Asymptotically Good List-Colorings , 1996, J. Comb. Theory A.

[11]  Vojtech Rödl,et al.  Partial Steiner systems and matchings in hypergraphs , 1998, Random Struct. Algorithms.

[12]  Jeong Han Kim,et al.  The Ramsey Number R(3, t) Has Order of Magnitude t2/log t , 1995, Random Struct. Algorithms.

[13]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[14]  Jeff Kahn,et al.  Coloring Nearly-Disjoint Hypergraphs with n+o(n) Colors , 1992, J. Comb. Theory, Ser. A.

[15]  Jeong Han Kim,et al.  Nearly perfect matchings in regular simple hypergraphs , 1997 .

[16]  Ingo Schiermeyer,et al.  The Ramsey number r(C7, C7, C7) , 2003, Discuss. Math. Graph Theory.

[17]  Kazuoki Azuma WEIGHTED SUMS OF CERTAIN DEPENDENT RANDOM VARIABLES , 1967 .

[18]  Van H. Vu,et al.  AN UPPER BOUND ON THE LIST CHROMATIC NUMBER OF LOCALLY SPARSE GRAPHS , 2001 .

[19]  Vojtech Rödl,et al.  On a Packing and Covering Problem , 1985, Eur. J. Comb..

[20]  Van H. Vu,et al.  Concentration of Multivariate Polynomials and Its Applications , 2000, Comb..

[21]  Van H. Vu On some simple degree conditions that guarantee the upper bound on the chromatic (choice) number of random graphs , 1999, J. Graph Theory.

[22]  Vojtech Rödl,et al.  Near Perfect Coverings in Graphs and Hypergraphs , 1985, Eur. J. Comb..

[23]  Jeff Kahn On a problem of Erdős and Lovász: Random lines in a projective plane , 1992, Comb..

[24]  Jeong Han Kim,et al.  Nearly Optimal Partial Steiner Systems , 2001, Electron. Notes Discret. Math..

[25]  Noga Alon,et al.  Transversal numbers of uniform hypergraphs , 1990, Graphs Comb..

[26]  Joel H. Spencer,et al.  Asymptotic behavior of the chromatic index for hypergraphs , 1989, J. Comb. Theory, Ser. A.