Combinatorial proofs of inverse relations and log-concavity for Bessel numbers
暂无分享,去创建一个
[1] Francesco Brenti,et al. Combinatorics and Total Positivity , 1995, J. Comb. Theory A.
[2] D. White,et al. Constructive combinatorics , 1986 .
[3] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[4] Herbert S. Wilf,et al. Generating functionology , 1990 .
[5] Christian Krattenthaler,et al. Combinatorial Proof of the Log-Concavity of the Sequence of Matching Numbers , 1996, J. Comb. Theory, Ser. A.
[6] H. Wilf. generatingfunctionology: Third Edition , 1990 .
[7] Orrin Frink,et al. A new class of orthogonal polynomials: The Bessel polynomials , 1949 .
[8] Ji-Young Choi,et al. On the Unimodality and Combinatorics of Bessel Numbers , 2003, Discret. Math..
[9] Bruce E. Sagan,et al. Inductive and injective proofs of log concavity results , 1988, Discret. Math..
[10] J. L. Burchnall. The Bessel Polynomials , 1951, Canadian Journal of Mathematics.
[11] Chris D. Godsil,et al. ALGEBRAIC COMBINATORICS , 2013 .
[12] Gian-Carlo Rota,et al. On the foundations of combinatorial theory III , 1969 .
[13] S. Bochner,et al. Über Sturm-Liouvillesche Polynomsysteme , 1929 .