Crystal growth in aqueous hydrofluoric acid and (HF)x · pyridine solutions: syntheses and crystal structures of [Ni(H2O)6]2+[MF6]2- (M = Ti, Zr, Hf) and Ni3(py)12F6 · 7H2O

Abstract The syntheses and structures of [Ni(H2O)6]2+[MF6]2− (M = Ti,Zr,Hf) and Ni3(py)12F6·7H2O are reported. The former three compounds are isostructural, crystallizing in the trigonal space group R 3 (No. 148) with Z = 3. The lattice parameters are a = 9.489(4), c = 9.764(7) A , with V = 761(1) A3 for Ti; a = 9.727(2), c = 10.051(3) A, with V = 823.6(6) A3 for Zr; and a = 9.724(3), c = 10.028(4)A, with V = 821.2(8)A3 for Hf. The structures consist of discrete [Ni(H2O)6]2+ and [MF6]2− octahedra joined by OH⋯F hydrogen bond Large single crystals were grown in an aqueous hydrofluoric acid solution. Ni3(py)12F6·7H2O crystallizes in the monoclinic space group I2/a (No. 15) with Z = 4. The lattice parameters are a = 16.117(4), b = 8.529(3), c = 46.220(7) A , β = 92.46(2)°, and V = 6348(5) A 3 . The structure consists of discrete Ni(py)4F2 octahedra linked through HOH⋯F and HOH⋯O hydrogen bonding interactions. Single c were grown from a (HF)x·pyridine/pyridine/water solution.

[1]  T. C. Waddington Non-aqueous solvent systems , 1965 .

[2]  D. H. Templeton,et al.  Crystal structures of the fluosilicate hexahydrates of cobalt, nickel and zinc , 1973 .

[3]  Stuart A. Rice,et al.  Inorganic Electronic Spectroscopy , 1968 .

[4]  G. Wilkinson Hydrogen Bonding in Solids , 1968 .

[5]  B. Morosin Structure refinements on dichloro- and dibromobis(pyridine)copper(II) , 1975 .

[6]  Anthony R. West,et al.  Solid State Chemistry and its Applications , 1984 .

[7]  J. Perumareddi,et al.  Polarized electronic spectra and electronic energy levels of some tetragonal nickel(II) complexes , 1975 .

[8]  L. Pauling XXVI. On the crystal structure of nickel chlorostannate hexahydrate , 1930 .

[9]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[10]  G. Ozin,et al.  Non-aqueous synthesis of giant crystals of zeolites and molecular sieves , 1993, Nature.

[11]  K. Osaki,et al.  An X-ray study of the low-temperature form of MgSiF6.6H2O and the relation between the crystal lattices of low- and high-temperature forms , 1972 .

[12]  A. F. Schreiner,et al.  The crystal and molecular structure of diiodotetrakis(pyridine)nickel(II) [Nipy4I2] , 1973 .

[13]  H. Schäfer Preparative Solid State Chemistry: The Present Position , 1971 .

[14]  C. Jørgensen,et al.  Comparative Crystal Field Studies of some Ligands and the Lowest Singlet State of Paramagnetic Nickel(II) Complexes. , 1955 .

[15]  H. Lynton,et al.  Crystal and Molecular Structure of Hexaaquocobalt(II)–Hexafluorosilicate(IV), [Co(H2O)6][SiF6] , 1973 .

[16]  J. S. Anderson,et al.  Solid State Chemistry , 1973, Nature.

[17]  W. L. Steffen,et al.  Dichlorobis(pyridine)zinc(II) – a redetermination , 1976 .

[18]  A. Linden,et al.  The Nature of the Hexahydrates of Divalent Transition Metal Cations: The Structures of the Hexafluorogermanate Hexahydrates of Iron(II), Cobalt(II) and Nickel(II) , 1987 .

[19]  C. J. Gilmore,et al.  MITHRIL–an integrated direct‐methods computer program , 1984 .

[20]  K. Nakamoto,et al.  Stretching Frequencies as a Function of Distances in Hydrogen Bonds , 1955 .

[21]  G. Stucky,et al.  Low-temperature synthesis of hydrated zinco(beryllo)-phosphate and arsenate molecular sieves , 1991, Nature.

[22]  W. C. Hamilton Bond distances and thermal motion in ferrous fluosilicate hexahydrate: a neutron diffraction study , 1962 .