S92 phosphorylation induces structural changes in the N-terminus domain of human mitochondrial calcium uniporter

[1]  J. Backs,et al.  CaMKII does not control mitochondrial Ca2+ uptake in cardiac myocytes , 2020, The Journal of physiology.

[2]  X. Bai,et al.  Structural Mechanism of EMRE-Dependent Gating of the Human Mitochondrial Calcium Uniporter , 2019, Cell.

[3]  Yibing Chen,et al.  MCUR1 facilitates epithelial-mesenchymal transition and metastasis via the mitochondrial calcium dependent ROS/Nrf2/Notch pathway in hepatocellular carcinoma , 2019, Journal of experimental & clinical cancer research : CR.

[4]  T. Finkel,et al.  AMPK-mediated activation of MCU stimulates mitochondrial Ca2+ entry to promote mitotic progression , 2019, Nature Cell Biology.

[5]  William H. Thiel,et al.  CaMKII (Ca2+/Calmodulin-Dependent Kinase II) in Mitochondria of Smooth Muscle Cells Controls Mitochondrial Mobility, Migration, and Neointima Formation , 2018, Arteriosclerosis, thrombosis, and vascular biology.

[6]  Hushan Yang,et al.  MCUR1-Mediated Mitochondrial Calcium Signaling Facilitates Cell Survival of Hepatocellular Carcinoma via Reactive Oxygen Species-Dependent P53 Degradation. , 2017, Antioxidants & redox signaling.

[7]  J. Cheung,et al.  Mitochondrial Ca2+ Uniporter Is a Mitochondrial Luminal Redox Sensor that Augments MCU Channel Activity. , 2017, Molecular cell.

[8]  Alexandre M. J. J. Bonvin,et al.  PRODIGY: a web server for predicting the binding affinity of protein-protein complexes , 2016, Bioinform..

[9]  P. Stathopulos,et al.  Structural Insights into Mitochondrial Calcium Uniporter Regulation by Divalent Cations. , 2016, Cell chemical biology.

[10]  T. Madl,et al.  PRMT1-mediated methylation of MICU1 determines the UCP2/3 dependency of mitochondrial Ca2+ uptake in immortalized cells , 2016, Nature Communications.

[11]  S. Houser,et al.  MCUR1 Is a Scaffold Factor for the MCU Complex Function and Promotes Mitochondrial Bioenergetics. , 2016, Cell reports.

[12]  Liangliang Kong,et al.  Architecture of the Mitochondrial Calcium Uniporter , 2016, Nature.

[13]  S. Lim,et al.  Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation , 2016, Cell & Bioscience.

[14]  D. Clapham,et al.  Mitochondrial calcium uniporter regulator 1 (MCUR1) regulates the calcium threshold for the mitochondrial permeability transition , 2016, Proceedings of the National Academy of Sciences.

[15]  Jia Jia Lim,et al.  Structure and function of the N‐terminal domain of the human mitochondrial calcium uniporter , 2015, EMBO reports.

[16]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[17]  O. Krizanova,et al.  Calcium and ROS: A mutual interplay , 2015, Redox biology.

[18]  Jianyi(Jay) Zhang,et al.  The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart. , 2015, Cell reports.

[19]  S. Houser,et al.  The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition. , 2015, Cell reports.

[20]  M. Disatnik,et al.  Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases. , 2015, Circulation research.

[21]  A. Hudmon,et al.  Mitochondrial Ca2+ uniporter and CaMKII in heart , 2014, Nature.

[22]  Godfrey L. Smith,et al.  Adrenergic signaling regulates mitochondrial Ca2+ uptake through Pyk2-dependent tyrosine phosphorylation of the mitochondrial Ca2+ uniporter. , 2014, Antioxidants & redox signaling.

[23]  T. Sheppard,et al.  Motional timescale predictions by molecular dynamics simulations: Case study using proline and hydroxyproline sidechain dynamics , 2014, Proteins.

[24]  Robert S. Balaban,et al.  The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter (MCU) , 2013, Nature Cell Biology.

[25]  J. Molkentin,et al.  CaMKII does it again: even the mitochondria cannot escape its influence. , 2013, Circulation research.

[26]  K. Laband,et al.  MCUR1 is an essential component of mitochondrial Ca(2+) uptake that regulates cellular metabolism. , 2013, Nature cell biology.

[27]  M. Negrini,et al.  Downregulation of the Mitochondrial Calcium Uniporter by Cancer-Related miR-25 , 2013, Current Biology.

[28]  Paul D Adams,et al.  Modelling dynamics in protein crystal structures by ensemble refinement , 2012, eLife.

[29]  S. Eom,et al.  Crystallization and preliminary X-ray crystallographic analysis of the oxysterol-binding protein Osh3 from Saccharomyces cerevisiae. , 2012, Acta crystallographica. Section F, Structural biology and crystallization communications.

[30]  J. Kolesar,et al.  MCUR1 is an Essential Component of Mitochondrial Ca2+ Uptake that Regulates Cellular Metabolism , 2012, Nature Cell Biology.

[31]  Mark E. Anderson,et al.  CaMKII determines mitochondrial stress responses in heart , 2012, Nature.

[32]  Rosario Rizzuto,et al.  Mitochondria as sensors and regulators of calcium signalling , 2012, Nature Reviews Molecular Cell Biology.

[33]  Wim F Vranken,et al.  ACPYPE - AnteChamber PYthon Parser interfacE , 2012, BMC Research Notes.

[34]  Y. Jan,et al.  Activity of the mitochondrial calcium uniporter varies greatly between tissues , 2012, Nature Communications.

[35]  D. Bers,et al.  Location Matters: Clarifying the Concept of Nuclear and Cytosolic CaMKII Subtypes , 2011, Circulation research.

[36]  V. Mootha,et al.  Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter , 2011, Nature.

[37]  R. Rizzuto,et al.  A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter , 2011, Nature.

[38]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[39]  W. Song,et al.  Phosphorylation of Ser 21 in Fyn regulates its kinase activity, focal adhesion targeting, and is required for cell migration , 2011, Journal of cellular physiology.

[40]  A. Gerds,et al.  Functional alterations in protein kinase C beta II expression in melanoma , 2010, Pigment cell & melanoma research.

[41]  Vincent B. Chen,et al.  Acta Crystallographica Section D Biological , 2001 .

[42]  B. Devogelaere,et al.  Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation. , 2009, Biochimica et biophysica acta.

[43]  D. Bers,et al.  Ca2+/Calmodulin–Dependent Protein Kinase Modulates Cardiac Ryanodine Receptor Phosphorylation and Sarcoplasmic Reticulum Ca2+ Leak in Heart Failure , 2005, Circulation research.

[44]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[45]  M. Yaffe,et al.  Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening , 2005, BMC Biochemistry.

[46]  Itay Mayrose,et al.  ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures , 2005, Nucleic Acids Res..

[47]  P. Pinton,et al.  pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. , 2005, Biochemical and biophysical research communications.

[48]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[49]  J. C. Tilak,et al.  Free radicals and antioxidants in human health: current status and future prospects. , 2004, The Journal of the Association of Physicians of India.

[50]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[51]  Nathan A. Baker,et al.  PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations , 2004, Nucleic Acids Res..

[52]  Michael B Yaffe,et al.  The use of in vitro peptide-library screens in the analysis of phosphoserine/threonine-binding domain structure and function. , 2004, Annual review of biophysics and biomolecular structure.

[53]  Henry N. Po,et al.  The Henderson-Hasselbalch Equation: Its History and Limitations , 2001 .

[54]  M. Yaffe,et al.  Phosphoserine/threonine-binding domains. , 2001, Current opinion in cell biology.

[55]  D. Burkhoff,et al.  PKA Phosphorylation Dissociates FKBP12.6 from the Calcium Release Channel (Ryanodine Receptor) Defective Regulation in Failing Hearts , 2000, Cell.

[56]  R. Wojcikiewicz,et al.  Phosphorylation of Inositol 1,4,5-Trisphosphate Receptors by cAMP-dependent Protein Kinase , 1998, The Journal of Biological Chemistry.

[57]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[58]  S. Papa,et al.  Topology of the mitochondrial cAMP‐dependent protein kinase and its substrates , 1996, FEBS letters.

[59]  J. Blenis,et al.  Evidence for two catalytically active kinase domains in pp90rsk , 1996, Molecular and cellular biology.

[60]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[61]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[62]  B. Matthews,et al.  Structure of a thermostable disulfide-bridge mutant of phage T4 lysozyme shows that an engineered cross-link in a flexible region does not increase the rigidity of the folded protein. , 1990, Biochemistry.

[63]  E. Krebs,et al.  Activation of multiple protein kinases during the burst in protein phosphorylation that precedes the first meiotic cell division in Xenopus oocytes. , 1988, The Journal of biological chemistry.

[64]  F. Mcmorris,et al.  Cyclic AMP decreases the phosphorylation state of myelin basic proteins in rat brain cell cultures. , 1987, The Journal of biological chemistry.

[65]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[66]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[67]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[68]  S. Nosé,et al.  Constant pressure molecular dynamics for molecular systems , 1983 .

[69]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[70]  Mona,et al.  Identification of multiple in vivo phosphorylation sites in rabbit myelin basic protein. , 1983, The Journal of biological chemistry.

[71]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[72]  R. Rizzuto,et al.  MICU3 is a tissue-specific enhancer of mitochondrial calcium uptake , 2018, Cell Death & Differentiation.

[73]  C. Horbinski,et al.  Serial Review : The powerhouse takes control of the cell : The role of mitochondria in signal transduction Serial Review , 2004 .

[74]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[75]  D Vanderspoel,et al.  GROMACS - A PARALLEL COMPUTER FOR MOLECULAR-DYNAMICS SIMULATIONS , 1993 .