A proof of Alon's second eigenvalue conjecture and related problems

A d-regular graph has largest or first (adjacency matrix) eigenvalue λ1 = d. In this paper we show the following conjecture of Alon. Fix an integer d > 2 and a real ε > 0. Then for sufficiently large n we have that "most" d-regular graphs on n vertices have all their eigenvalues except λ1 = d bounded above by 2√d-1 + ε. Our methods, being trace methods, also bound those eigenvalues below by -2√d-1 - ε.

[1]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[2]  M. Murty Ramanujan Graphs , 1965 .

[3]  D. L. Johnson Presentations of groups , 1976 .

[4]  S. Geman A Limit Theorem for the Norm of Random Matrices , 1980 .

[5]  B. McKay The expected eigenvalue distribution of a large regular graph , 1981 .

[6]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[7]  M. Picardello,et al.  Harmonic Analysis on Free Groups , 1983 .

[8]  J. Dodziuk Difference equations, isoperimetric inequality and transience of certain random walks , 1984 .

[9]  Cuny Academic Works Diffe rence Equations, Isoperimetric Inequality and Transience of Certain Random Walks , 1984 .

[10]  N. Alon Eigenvalues and expanders , 1986, Comb..

[11]  Alexander Lubotzky,et al.  Explicit expanders and the Ramanujan conjectures , 1986, STOC '86.

[12]  Brian H. Marcus,et al.  State splitting for variable-length graphs , 1986, IEEE Trans. Inf. Theory.

[13]  M. Buck Expanders and diffusers , 1986 .

[14]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, WG.

[15]  Andrei Z. Broder,et al.  On the second eigenvalue of random regular graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[16]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[17]  R. G. Möller Groups acting on graphs , 1991 .

[18]  Joel Friedman,et al.  On the second eigenvalue and random walks in randomd-regular graphs , 1991, Comb..

[19]  Noga Alon,et al.  On the second eigenvalue of a graph , 1991, Discret. Math..

[20]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[21]  J. Friedman Some geometric aspects of graphs and their eigenfunctions , 1993 .

[22]  Moshe Morgenstern,et al.  Existence and Explicit Constructions of q + 1 Regular Ramanujan Graphs for Every Prime Power q , 1994, J. Comb. Theory, Ser. B.

[23]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[24]  N. Wormald,et al.  Models of the , 2010 .

[25]  W. Woess Random walks on infinite graphs and groups, by Wolfgang Woess, Cambridge Tracts , 2001 .

[26]  Nicholas C. Wormald,et al.  Random Matchings Which Induce Hamilton Cycles and Hamiltonian Decompositions of Random Regular Graphs , 2001, J. Comb. Theory, Ser. B.

[27]  Svante Janson,et al.  Permutation Pseudographs and Contiguity , 2002, Combinatorics, Probability and Computing.

[28]  J. Friedman Relative expanders or weakly relatively Ramanujan graphs , 2003 .

[29]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[30]  Joel Friedman,et al.  Generalized Alon--Boppana Theorems and Error-Correcting Codes , 2005, SIAM J. Discret. Math..