Visual function deficits in glaucoma. Electroretinogram pattern and luminance nonlinearities.

The pattern electroretinogram is abnormal in glaucoma. Part of the pattern electroretinogram may be attributed to the summation of responses to luminance increases and decreases (nonlinear luminance responses). We conducted a study to investigate the effect of glaucoma on the pattern electroretinogram component waves and to determine if the flicker electroretinogram nonlinear components are abnormal in glaucoma. We tested 35 subjects in two replications of four conditions: 10- and 20-Hz flicker, and 4- and 10-Hz pattern reversal. Only the even harmonics were recorded. The patients with glaucoma had reduced electroretinogram amplitudes for all measures relative to the normal subjects. Electroretinogram amplitudes of those suspected of having glaucoma were intermediate. The greatest amplitude reductions were for the 10-Hz flicker electroretinogram and the 4-Hz pattern electroretinogram. These results confirm pattern electroretinogram abnormalities and reveal flicker electroretinogram abnormalities in glaucoma.

[1]  W. Green,et al.  Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. , 1982, Archives of ophthalmology.

[2]  H. Spekreijse,et al.  Luminance Responses to Pattern Reversal , 1973 .

[3]  R. H. Steinberg,et al.  Proximal retinal contribution to the intraretinal 8-Hz pattern ERG of cat. , 1987, Journal of neurophysiology.

[4]  D. Alvis Electroretinographic changes in controlled chronic open-angle glaucoma. , 1966, American journal of ophthalmology.

[5]  L Maffei,et al.  Pattern electroretinograms and visual-evoked potentials in glaucoma and multiple sclerosis. , 1983, American journal of ophthalmology.

[6]  R. H. Steinberg,et al.  Contribution from proximal retina to intraretinal pattern ERG: the M-wave. , 1985, Investigative ophthalmology & visual science.

[7]  H. Persson,et al.  Pattern-reversal electroretinograms in unilateral glaucoma. , 1983, Investigative ophthalmology & visual science.

[8]  J. Odom,et al.  Pattern evoked retinal response (PERR) in human: effects of spatial frequency, temporal frequency, luminance and defocus. , 1982, Current eye research.

[9]  K. Kawasaki,et al.  [Negative wave in human pattern ERG and its suppression in glaucoma]. , 1986, Nippon Ganka Gakkai zasshi.

[10]  G. Holder,et al.  Significance of abnormal pattern electroretinography in anterior visual pathway dysfunction. , 1987, The British journal of ophthalmology.

[11]  C. Baker,et al.  Current source density analysis of linear and non‐linear components of the primate electroretinogram. , 1988, The Journal of physiology.

[12]  H. Persson,et al.  Pattern-reversal electroretinograms and high-pass resolution perimetry in suspected or early glaucoma. , 1987, Ophthalmology.

[13]  G. Trick Retinal potentials in patients with primary open-angle glaucoma: physiological evidence for temporal frequency tuning deficits. , 1985, Investigative ophthalmology & visual science.

[14]  T. Tomita,et al.  Origins of the erg waves , 1981, Vision Research.

[15]  G. Bartl THE EFFECTS OF VISUAL FIELD CHANGES AND OCULAR HYPERTENSION ON THE VISUAL EVOKED POTENTIAL , 1980, Annals of the New York Academy of Sciences.

[16]  D. Norren,et al.  Origin of the electroretinogram in the intact macaque eye—II Current source-density analysis , 1985, Vision Research.

[17]  J. Odom,et al.  The pattern electroretinogram (PERG) in ocular hypertension and glaucoma. , 1988, Archives of ophthalmology.

[18]  P. Ringens,et al.  Pattern electroretinogram and glaucoma. , 1984, Developments in ophthalmology.