Asymptotic stability of solitons of the gKdV equations with general nonlinearity

AbstractWe consider the generalized Korteweg-de Vries equation (gKdV) $$\partial_t u + \partial_x (\partial_x^2 u + f(u)) = 0, \quad (t, x) \in [0, T) \times {\mathbb{R}},$$with general C3 nonlinearity f. Under an explicit condition on f and c > 0, there exists a solution in the energy space H1 of the type u(t, x) = Qc(x − x0 − ct), called soliton. In this paper, under general assumptions on f and Qc, we prove that the family of solitons around Qc is asymptotically stable in some local sense in H1, i.e. if u(t) is close to Qc (for all t ≥  0), then u(t) locally converges in the energy space to some Qc+ as t → +∞. Note in particular that we do not assume the stability of Qc. This result is based on a rigidity property of the gKdV equation around Qc in the energy space whose proof relies on the introduction of a dual problem. These results extend the main results in Martel (SIAM J. Math. Anal. 38:759–781, 2006); Martel and Merle (J. Math. Pures Appl. 79:339–425, 2000), (Arch. Ration. Mech. Anal. 157:219–254, 2001), (Nonlinearity 1:55–80), devoted to the pure power case.

[1]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[2]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[3]  G. Perelman Asymptotic Stability of Multi-soliton Solutions for Nonlinear Schrödinger Equations , 2003 .

[4]  Yvan Martel,et al.  Linear Problems Related to Asymptotic Stability of Solitons of the Generalized KdV Equations , 2006, SIAM J. Math. Anal..

[5]  Peter Schuur,et al.  The emergence of solutions of the Korteweg-de Vries equation form arbitrary initial conditions , 1983 .

[6]  Yvan Martel,et al.  Asymptotic Stability of Solitons¶for Subcritical Generalized KdV Equations , 2001 .

[7]  R. Pego,et al.  On asymptotic stability of solitary waves , 1992 .

[8]  Tetsu Mizumachi,et al.  Large Time Asymptotics of Solutions Around Solitary Waves to the Generalized Korteweg-de Vries Equations , 2001, SIAM J. Math. Anal..

[9]  Yvan Martel,et al.  Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations , 2005 .

[10]  P. Souganidis,et al.  Stability and instability of solitary waves of Korteweg-de Vries type , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[12]  Vladimir S. Buslaev,et al.  On the stability of solitary waves for nonlinear Schr?odinger equations , 1995 .

[13]  M. Grillakis Existence of nodal solutions of semilinear equations in RN , 1990 .

[14]  Wilhelm Schlag,et al.  Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension , 2006 .

[15]  C. Kenig,et al.  Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .

[16]  F. Merle,et al.  Description of two soliton collision for the quartic gKdV equation , 2007, 0709.2672.

[17]  Luc Molinet,et al.  On the Cauchy Problem for the Generalized Korteweg-de Vries Equation , 2003 .

[18]  W. Schlag,et al.  The nonlinear Schrödinger equation , 2008 .

[19]  Frank Merle,et al.  Instability of solitons for the critical generalized Korteweg—de Vries equation , 2001 .

[20]  Tai-Peng Tsai,et al.  Stability and Asymptotic Stability in the Energy Space of the Sum of N Solitons for Subcritical gKdV Equations , 2001 .

[21]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[22]  Frank Merle,et al.  A Liouville theorem for the critical generalized Korteweg–de Vries equation , 2000 .

[23]  M. Tsutsumi,et al.  On the Generalized Korteweg-de Vries Equation , 1970 .

[24]  F. Merle,et al.  Refined asymptotics around solitons for gKdV equations , 2007, 0706.1178.

[25]  Jeng-Eng Lin,et al.  On the generalized Korteweg-de Vries equation , 1979 .

[26]  F. Merle,et al.  Stability in $H^1$ of the sum of $K$ solitary waves for some nonlinear Schrödinger equations , 2006 .

[27]  W. Rother,et al.  Nonlinear scalar field equations , 1992, Differential and Integral Equations.

[28]  Frank Merle,et al.  Asymptotic stability of solitons of the subcritical gKdV equations revisited , 2005 .

[29]  A. B. Datseff On the nonlinear schrödinger equation , 2009 .

[30]  Frank Merle,et al.  Stability of Two Soliton Collision for Nonintegrable gKdV Equations , 2007, 0709.2677.