A Bayesian state-space mark-recapture model to estimate exploitation rates in mixed-stock fisheries

A Bayesian state-space mark-recapture model is developed to estimate the exploitation rates of fish stocks caught in mixed-stock fisheries. Expert knowledge and published results on biological parameters, reporting rates of tags and other key parameters, are incorporated into the mark-recapture analysis through elaborations in model struc- ture and the use of informative prior probability distributions for model parameters. Information on related stocks is incorporated through the use of hierarchical structures and parameters that represent differences between the stock in question and related stocks. Fishing mortality rates are modelled using fishing effort data as covariates. A state-space formulation is adopted to account for uncertainties in system dynamics and the observation process. The methodology is applied to wild Atlantic salmon (Salmo salar) stocks from rivers located in the northeastern Baltic Sea that are ex- ploited by a sequence of mixed- and single-stock fisheries. Estimated fishing mortality rates for wild salmon are influ- enced by prior knowledge about tag reporting rates and salmon biology and, to a limited extent, by prior assumptions about exploitation rates. Resume : Nous elaborons un modele bayesien de marquage-recapture de type etat-espace pour estimer le taux d'exploitation des stocks de poissons captures dans des peches commerciales qui recoltent des stocks mixtes. Nous incorporons les connaissances des specialistes et les donnees publiees sur les parametres biologiques, les taux de signalisation des etiquettes et d'autres variables essentielles dans l'analyse de marquage-recapture par des modifications de la structure du modele et l'utilisation de distributions de probabilite a priori informatives pour les parametres du modele. Des renseignements sur les stocks apparentes sont incorpores grâce a l'utilisation de structures hierarchiques et de parametres qui representent les differences entre le stock etudie et les stocks apparentes. Les taux de mortalite due a la peche sont modelises par l'utilisation des donnees d'efforts de peche comme covariables. Nous adoptons une formulation etat-espace afin de tenir compte des incertitudes dans la dynamique du systeme et du processus d'observation. Nous appliquons notre methodologie a des stocks sauvages du saumon atlantique (Salmo salar )d e rivieres situees dans le nord-est de la Baltique qui sont exploites par des peches commerciales qui recoltent successive- ment des stocks mixtes et purs. Les taux estimes de mortalite due a la peche chez les saumons sauvages sont influen- ces par la connaissance prealable des taux de signalisation des etiquettes, de la biologie des saumons et, jusqu'a un certain point, des presuppositions concernant les taux d'exploitation.

[1]  E. Ikonen,et al.  Survival of Atlantic salmon captured in and released from a commercial trap-net: Potential for selective harvesting of stocked salmon , 2006 .

[2]  E. Jokikokko,et al.  Association between environmental factors, smolt size and the survival of wild and reared Atlantic salmon from the Simojoki River in the Baltic Sea , 2004 .

[3]  The advantage of using smolt age with allozymes for assessing wild stock contributions to Atlantic salmon catches in the Baltic Sea , 1997 .

[4]  Kevin N. Laland,et al.  Social learning and life skills training for hatchery reared fish , 2001 .

[5]  Etienne Rivot,et al.  Estimation of gillnet efficiency and selectivity across multiple sampling units: A hierarchical Bayesian analysis using mark-recapture data , 2007 .

[6]  Éric Parent,et al.  A Bayesian state-space modelling framework for fitting a salmon stage-structured population dynamic model to multiple time series of field data , 2004 .

[7]  G. Seber,et al.  The estimation of animal abundance and related parameters , 1974 .

[8]  D. Spiegelhalter,et al.  Disease Mapping With WinBUGS and MLwiN, Bayesian Approaches to Clinical Trials and Health Care Evaluation , 2004 .

[9]  Steven J. D. Martell,et al.  Implementing harvest rate objectives by directly monitoring exploitation rates and estimating changes in catchability , 2002 .

[10]  Xiao-Li Meng,et al.  Posterior Predictive $p$-Values , 1994 .

[11]  Russell B. Millar,et al.  Non‐linear state space modelling of fisheries biomass dynamics by using Metropolis‐Hastings within‐Gibbs sampling , 2000 .

[12]  G. Seber,et al.  Capture-recapture: Before and after EURING 2000 , 2002 .

[13]  K. Patterson,et al.  Evaluating uncertainty in harvest control law catches using Bayesian Markov chain Monte Carlo virtual population analysis with adaptive rejection sampling and including structural uncertainty , 1999 .

[14]  Samu Mäntyniemi,et al.  Bayesian mark-recapture estimation with an application to a salmonid smolt population , 2002 .

[15]  E. Jokikokko,et al.  Long‐term changes in the smolt size and age of Atlantic salmon, Salmo salar L., in a northern Baltic river related to parr density, growth opportunity and postsmolt survival , 2006 .

[16]  Øyvind Ulltang,et al.  Stock assessment and biological knowledge: can prediction uncertainty be reduced? , 1996 .

[17]  Murdoch K. McAllister,et al.  A Bayesian hierarchical analysis of stock-recruit data: quantifying structural and parameter uncertainties , 2004 .

[18]  Jessica Gurevitch,et al.  Meta-analysis in ecology , 2001 .

[19]  David A. Fournier,et al.  A spatially disaggregated, length-based, age-structured population model of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean , 2001 .

[20]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[21]  Ken B. Newman,et al.  Hierarchic modeling of salmon harvest and migration , 2000 .

[22]  Christian Genest,et al.  Combining Probability Distributions: A Critique and an Annotated Bibliography , 1986 .

[23]  J. Pella,et al.  Classical individual assignments versus mixture modeling to estimate stock proportions in Atlantic salmon (Salmo salar) catches from DNA microsatellite data , 2005 .

[24]  Sakari Kuikka,et al.  Annual variability in survival of sea‐ranched Baltic salmon, Salmo salar L: significance of smolt size and marine conditions , 1995 .

[25]  K. Pollock The use of auxiliary variables in capture-recapture modelling: An overview , 2002 .

[26]  R. Hilborn,et al.  Fisheries stock assessment and decision analysis: the Bayesian approach , 1997, Reviews in Fish Biology and Fisheries.

[27]  C. Walters,et al.  Quantitative Fisheries Stock Assessment , 1992, Springer US.

[28]  Murdoch K. McAllister,et al.  Formulating quantitative methods to evaluate fishery-management systems: what fishery processes should be modelled and what trade-offs should be made? , 1999 .

[29]  Ray Hilborn,et al.  Determination of Fish Movement Patterns from Tag Recoveries using Maximum Likelihood Estimators , 1990 .

[30]  D Malakoff,et al.  Bayes Offers a 'New' Way to Make Sense of Numbers , 1999, Science.

[31]  E. Jokikokko,et al.  Differences in sea migration between wild and reared Atlantic salmon (Salmo salar L.) in the Baltic Sea , 2003 .

[32]  Richard D. Methot,et al.  Age-structured meta-analysis of U.S. West Coast rockfish (Scorpaenidae) populations and hierarchical modeling of trawl survey catchabilities , 2002 .

[33]  Kenneth H. Pollock,et al.  Modeling capture, recapture, and removal statistics for estimation of demographic parameters for fish and wildlife populations : Past, present, and future , 1991 .

[34]  André E. Punt,et al.  A Bayesian Approach to Stock Assessment and Harvest Decisions Using the Sampling/Importance Resampling Algorithm , 1994 .

[35]  Jon T. Schnute,et al.  The influence of error on population estimates from catch-age models , 1995 .

[36]  D. Ludwig,et al.  Ecology, Conservation, and Public Policy , 2001 .

[37]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[38]  N. Kohler,et al.  Shark Tagging: A Review Of Conventional Methods and Studies , 2001, Environmental Biology of Fishes.

[39]  A. Romakkaniemi,et al.  Development of wild Atlantic salmon stocks in the rivers of the northern Baltic Sea in response to management measures , 2003 .

[40]  G. Power Stock Characteristics and Catches of Atlantic Salmon (Salmo salar) in Quebec, and Newfoundland and Labrador in Relation to Environmental Variables , 1981 .

[41]  G. Seber,et al.  Estimating Animal Abundance: Review III , 1999 .

[42]  James N. Ianelli,et al.  Bayesian stock assessment using catch-age data and the sampling - importance resampling algorithm , 1997 .

[43]  E. Knut,et al.  Paris Meeting of the International Council for the Exploration of the Sea , 1923, Nature.

[44]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[45]  W. Gazey,et al.  Population Estimation from Mark‐Recapture Experiments Using a Sequential Bayes Algorithm , 1986 .

[46]  André E. Punt,et al.  Stock assessment of school shark, Galeorhinus galeus, based on a spatially explicit population dynamics model , 2000 .

[47]  David A. Fournier,et al.  An advection-diffusion-reaction model for the estimation of fish movement parameters from tagging data, with application to skipjack tuna (Katsuwonus pelamis) , 1999 .

[48]  C. Walters,et al.  Quantitative fisheries stock assessment: Choice, dynamics and uncertainty , 2004, Reviews in Fish Biology and Fisheries.

[49]  M. Koljonen,et al.  The genetic consequence of hatchery-rearing on life-history traits of the Atlantic salmon (Salmo solar L.): a comparative analysis of sea-ranched salmon with wild and reared parents , 1997 .

[50]  Richard McGarvey,et al.  Estimating rates of fish movement from tag recoveries: conditioning by recapture , 2002 .

[51]  R. Hilborn,et al.  The Ecological Detective: Confronting Models with Data , 1997 .

[52]  S. Mäntyniemi,et al.  Estimation of annual mortality rates caused by early mortality syndromes (EMS) and their impact on salmonid stockrecruit relationships , 2006 .

[53]  Carl J. Walters,et al.  Calculation of Bayes Posterior Probability Distributions for Key Population Parameters , 1994 .

[54]  B. Jonsson,et al.  Variation in age, size and repeat spawning of adult Atlantic salmon in relation to river discharge , 1991 .

[55]  Anders Nielsen,et al.  Modelling stochastic fish stock dynamics using Markov Chain Monte Carlo , 2003 .

[56]  S. Kulmala,et al.  Reconciling economic and biological modeling of migratory fish stocks: Optimal management of the Atlantic salmon fishery in the Baltic Sea , 2008 .

[57]  Michael W. Davis,et al.  Understanding how the hatchery environment represses or promotes the development of behavioral survival skills , 1998 .

[58]  F. Caron,et al.  Biological characteristics of adult Atlantic sturgeon (Acipenser oxyrinchus) in the St Lawrence River estuary and the effectiveness of management rules , 2002 .