Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data

Abstract Forest fire management practices are highly dependent on the proper monitoring of the spatial distribution of the natural and man-made fuel complexes at landscape level. Spatial patterns of fuel types as well as the three-dimensional structure and state of the vegetation are essential for the assessment and prediction of forest fire risk and fire behaviour. A combination of the two remote sensing systems, imaging spectrometry and light detection and ranging (LiDAR), is well suited to map fuel types and properties, especially within the complex wildland–urban interface. LiDAR observations sample the spatial information dimension providing explicit geometric information about the structure of the Earth's surface and super-imposed objects. Imaging spectrometry on the other hand samples the spectral dimension, which is sensitive for discrimination of surface types. As a non-parametric classifier support vector machines (SVM) are particularly well adapted to classify data of high dimensionality and from multiple sources as proposed in this work. The presented approach achieves an improved land cover mapping adapted to forest fire management needs. The map is based on a single SVM classifier combining the spectral and spatial information dimensions provided by imaging spectrometry and LiDAR.

[1]  James K. Brown,et al.  Handbook for inventorying surface fuels and biomass in the interior West. General technical report , 1982 .

[2]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Frédéric Baret,et al.  SPECTRA - Surface Processes and Ecosystem Changes Through Response Analysis , 2004 .

[4]  J. Privette,et al.  Impact of Tissue, Canopy, and Landscape Factors on the Hyperspectral Reflectance Variability of Arid Ecosystems , 2000 .

[5]  Paul M. Mather,et al.  Some issues in the classification of DAIS hyperspectral data , 2006 .

[6]  R. Keane,et al.  Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling , 2001 .

[7]  J. A. Tullis,et al.  Synergistic Use of Lidar and Color Aerial Photography for Mapping Urban Parcel Imperviousness , 2003 .

[8]  Thomas Curt,et al.  Fire risk ignition: The integrated model “AIOLI” , 2006 .

[9]  K. Itten,et al.  Fusion of imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy characterization , 2007 .

[10]  Patrick Hostert,et al.  Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines , 2007 .

[11]  C. Brodley,et al.  Decision tree classification of land cover from remotely sensed data , 1997 .

[12]  Rosa Lasaponara,et al.  Remotely sensed characterization of forest fuel types by using satellite ASTER data , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[13]  E. Chuvieco Wildland Fire Danger Estimation and Mapping: The Role of Remote Sensing Data , 2003 .

[14]  Claus Brenner,et al.  Extraction of buildings and trees in urban environments , 1999 .

[15]  Giles M. Foody,et al.  The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM , 2006 .

[16]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[17]  D. Roberts,et al.  Using Imaging Spectroscopy to Study Ecosystem Processes and Properties , 2004 .

[18]  Björn Waske,et al.  Classifying Multilevel Imagery From SAR and Optical Sensors by Decision Fusion , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[19]  K. Itten,et al.  Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties , 2004 .

[20]  Bernhard Schölkopf,et al.  New Support Vector Algorithms , 2000, Neural Computation.

[21]  Lorenzo Bruzzone,et al.  A Multilevel Context-Based System for Classification of Very High Spatial Resolution Images , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[22]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[23]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[24]  P. Quézel,et al.  Ecologie et biogéographie des forêts du bassin méditerranéen , 2003 .

[25]  Jack D. Cohen Preventing Disaster: Home Ignitability in the Wildland-Urban Interface , 2000, Journal of Forestry.

[26]  Christopher O. Justice,et al.  A review of current space-based fire monitoring in Australia and the GOFC/GOLD program for international coordination , 2003 .

[27]  M. Maltamo,et al.  The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs , 2007 .

[28]  Britta Allgöwer,et al.  Introduction to fire danger rating and remote sensing - Will remote sensing enhance wildland fire danger prediction? , 2003 .

[29]  Jon Atli Benediktsson,et al.  Fusion of Support Vector Machines for Classification of Multisensor Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[30]  S. Ustin,et al.  Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .

[31]  S. Reutebuch,et al.  Estimating forest canopy fuel parameters using LIDAR data , 2005 .

[32]  Claudia M. Castaneda,et al.  Estimating Canopy Water Content of Chaparral Shrubs Using Optical Methods , 1998 .

[33]  D. Roberts,et al.  Deriving Water Content of Chaparral Vegetation from AVIRIS Data , 2000 .

[34]  K. Itten,et al.  LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management , 2004 .

[35]  S. M. Jong,et al.  Above‐ground biomass assessment of Mediterranean forests using airborne imaging spectrometry: the DAIS Peyne experiment , 2003 .

[36]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[37]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[38]  Roberta E. Martin,et al.  Carnegie Airborne Observatory: in-flight fusion of hyperspectral imaging and waveform light detection and ranging for three-dimensional studies of ecosystems , 2007 .

[39]  Ross A. Hill,et al.  Mapping woodland species composition and structure using airborne spectral and LiDAR data , 2005 .

[40]  E. Næsset,et al.  Single Tree Segmentation Using Airborne Laser Scanner Data in a Structurally Heterogeneous Spruce Forest , 2006 .

[41]  E. Chuvieco,et al.  Integration of Physical and Human Factors in Fire Danger Assessment , 2003 .

[42]  K. Itten,et al.  Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction , 2006 .

[43]  L. S. Davis,et al.  An assessment of support vector machines for land cover classi(cid:142) cation , 2002 .

[44]  A. Goetz,et al.  Assessing spatial patterns of forest fuel using AVIRIS data , 2006 .

[45]  Susan L. Ustin,et al.  Evaluation of the potential of Hyperion for fire danger assessment by comparison to the Airborne Visible/Infrared Imaging Spectrometer , 2003, IEEE Trans. Geosci. Remote. Sens..

[46]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[47]  Giles M. Foody,et al.  A relative evaluation of multiclass image classification by support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[48]  M. Lefsky,et al.  Laser altimeter canopy height profiles: methods and validation for closed-canopy, broadleaf forests , 2001 .

[49]  K. Itten,et al.  Quantitative retrieval of biogeophysical characteristics using imaging spectroscopy - a mountain forest case study , 2004 .

[50]  Daniel Schläpfer,et al.  Geo-atmospheric processing of airborne imaging spectrometry data. Part 1: Parametric orthorectification , 2002 .

[51]  S. Tarantola,et al.  Detecting vegetation leaf water content using reflectance in the optical domain , 2001 .

[52]  R. Burgan,et al.  Review of users' needs in operational fire danger estimation: The Oklahoma example , 2003 .

[53]  Martin Herold,et al.  Spectral resolution requirements for mapping urban areas , 2003, IEEE Trans. Geosci. Remote. Sens..

[54]  Jacob T. Mundt,et al.  Mapping Sagebrush Distribution Using Fusion of Hyperspectral and Lidar Classifications , 2006 .

[55]  R. Richter,et al.  Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction , 2002 .

[56]  P. Swain,et al.  Neural Network Approaches Versus Statistical Methods In Classification Of Multisource Remote Sensing Data , 1990 .

[57]  Terje Gobakken,et al.  Estimating forest growth using canopy metrics derived from airborne laser scanner data , 2005 .

[58]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[59]  Giles M. Foody,et al.  Status of land cover classification accuracy assessment , 2002 .