Modelling the behaviour of a karst system catchment using non-linear hysteretic conceptual model

Summary A two reservoir conceptual model with a hysteretic transfer function is proposed for hydrological modelling of karst catchments. The main features of the model are (i) a simple model for evapotranspiration based on potential rates, (ii) a non-linear, hysteretic discharge law accounting for the variations of connectivity in the soil/epikarst zone, (iii) a threshold-based discharge law accounting for the time variability of the active catchment area via losses to secondary springs. The structure of the model and the governing equations are proposed on the basis of physical considerations, with the underlying assumption that the model compartments, state variables and parameters should bear a physical reality. The model is applied to the karst system catchment of the Durzon spring (France). Model robustness is assessed by using only 1 year for calibration and 4 years for validation. A modified Nash–Sutcliffe criterion decreases from 91% to 87% between the calibration and validation phase, thus demonstrating the robustness of the model. The proposed model is compared to a model of similar complexity available from the literature, previously applied to similar catchments. The comparison indicates the superiority of the hysteresis-based model in terms of robustness and overall performance.

[1]  H. L. Penman Natural evaporation from open water, bare soil and grass , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  The hysteretic linear reservoir—a new Preisach model , 2006 .

[3]  Séverin Pistre,et al.  Mediterranean flash flood transfer through karstic area , 2008 .

[4]  Dinshaw N. Contractor,et al.  Simulated effect of vadose infiltration on water levels in the Northern Guam Lens Aquifer. , 2000 .

[5]  J. Chéry,et al.  Absolute gravity monitoring of water storage variation in a karst aquifer on the larzac plateau (Southern France) , 2008 .

[6]  O. Bonacci Analysis of the maximum discharge of karst springs , 2001 .

[7]  Michel Bakalowicz,et al.  Modelling of the functioning of karst aquifers with a reservoir model: Application to Fontaine de Vaucluse (South of France) , 2007 .

[8]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[9]  A. Klimchouk Towards defining , delimiting and classifying epikarst : Its origin , processes and variants of geomorphic evolution , 2004 .

[10]  Vincent Guinot,et al.  Dynamics and contribution of karst groundwater to surface flow during Mediterranean flood , 2006 .

[11]  A. Mangin Contribution à l'étude hydrodynamique des aquifères karstiques , 1975 .

[12]  J. Mudry,et al.  The karst system of the Fontaine de Vaucluse (Southeastern France) , 1992 .

[13]  C. W. Thornthwaite An approach toward a rational classification of climate. , 1948 .

[14]  Séverin Pistre,et al.  Conceptualization and classification of groundwater-surface water hydrodynamic interactions in karst watersheds: case of the karst watershed of the Coulazou River (Southern France). , 2009 .

[15]  Charles J Vörösmarty,et al.  Intercomparison of Methods for Calculating Potential Evaporation in Regional and Global Water Balance Models , 1996 .

[16]  P. Fleury Sources sous-marines et aquifères karstiques côtiers méditerranéens : Fonctionnement et caractérisation , 2005 .

[17]  A. Pulido-Bosch,et al.  The discharge variability of some karst springs in Bulgaria studied by time series analysis , 1995 .

[18]  Charles Perrin,et al.  Vers une amélioration d'un modèle global pluie-débit au travers d'une approche comparative , 2000 .

[19]  Ge Sun,et al.  A COMPARISON OF SIX POTENTIAL EVAPOTRANSPIRATION METHODS FOR REGIONAL USE IN THE SOUTHEASTERN UNITED STATES 1 , 2005 .

[20]  George H. Hargreaves,et al.  Reference Crop Evapotranspiration from Temperature , 1985 .

[21]  Antoine Hreiche Modélisation conceptuelle de la transformation pluie-débit dans le contexte méditerranéen , 2003 .

[22]  Alparslan Arikan,et al.  MODALP: a deterministic rainfall-runoff model for large karstic areas , 1988 .

[23]  Damir Jukić,et al.  Groundwater balance estimation in karst by using a conceptual rainfall-runoff model , 2009 .

[24]  Dominique Thiéry Utilisation d'un modèle global pour identifier sur un niveau piézométrique des influences multiples dues à diverses activités humaines. , 1982 .

[25]  Arthur Marchandise,et al.  Modélisation hydrologique distribuée sur le Gardon d'Anduze : étude comparative de différents modèles pluie-débit, extrapolation de la normale à l'extrême et tests d'hypothèses sur les processus hydrologiques , 2007 .

[26]  P. Williams The role of the subcutaneous zone in karst hydrology , 1983 .

[27]  N. Nandakumar,et al.  Uncertainty in rainfall—runoff model simulations and the implications for predicting the hydrologic effects of land-use change , 1997 .

[28]  Peter Lehmann,et al.  Effect of hysteresis on water flow in a sand column with a fluctuating capillary fringe , 1998 .