Spherically symmetric Buchdahl-type model via extended gravitational decoupling
暂无分享,去创建一个
S. K. Maurya | Riju Nag | Moza Al Hadhrami | Zahra Al Amri | Neda Al Hadifi | Azhar Al Buraidi | Hafsa Al Wardi
[1] M. Daoud,et al. Role of Complexity on Self‐gravitating Compact Star by Gravitational Decoupling , 2022 .
[2] S. Ray,et al. Anisotropic stars in modified gravity: An extended gravitational decoupling approach , 2022, Chinese Physics C.
[3] S. K. Maurya,et al. Isotropization of embedding Class I spacetime and anisotropic system generated by complexity factor in the framework of gravitational decoupling , 2022, The European Physical Journal C.
[4] K. Singh,et al. Gravitationally decoupled anisotropic solution using polytropic EoS in the framework of 5D Einstein–Gauss–Bonnet Gravity , 2022, The European Physical Journal C.
[5] S. K. Maurya,et al. Role of gravitational decoupling on isotropization and complexity of self-gravitating system under complete geometric deformation approach , 2021, The European Physical Journal C.
[6] S. Hansraj,et al. Gravitationally Decoupled Strange Star Model beyond the Standard Maximum Mass Limit in Einstein–Gauss–Bonnet Gravity , 2021, The Astrophysical Journal.
[7] E. Fuenmayor,et al. Anisotropic star models in the context of vanishing complexity , 2021, Annals of Physics.
[8] E. Contreras,et al. Stellar models with like-Tolman IV complexity factor , 2021, The European Physical Journal C.
[9] M. Govender,et al. Exploring Physical Properties of Gravitationally Decoupled Anisotropic Solution in 5D Einstein‐Gauss‐Bonnet Gravity , 2021, Fortschritte der Physik.
[10] M. Zubair,et al. Charged anisotropic fluid sphere in comparison with its uncharged analogue through extended geometric deformation , 2021, Chinese Journal of Physics.
[11] A. Banerjee,et al. Minimally deformed anisotropic stars by gravitational decoupling in Einstein–Gauss–Bonnet gravity , 2021, The European Physical Journal C.
[12] S. K. Maurya,et al. Spherically symmetric anisotropic charged solution under complete geometric deformation approach , 2021, The European Physical Journal C.
[13] M. Carrasco-Hidalgo,et al. Ultracompact stars with polynomial complexity by gravitational decoupling , 2021, The European Physical Journal C.
[14] Quratulien Muneer,et al. Gravitational decoupled anisotropic spherical solutions in f(R, T) gravity by minimal geometric deformation approach , 2021, Physica Scripta.
[15] J. Kumar,et al. A generalized Buchdahl model for compact stars in f(R,T) gravity , 2021, Physics of the Dark Universe.
[16] M. Daoud,et al. A new well-behaved class of compact strange astrophysical model consistent with observational data , 2021, The European Physical Journal C.
[17] G. Mustafa,et al. Charged anisotropic Finch-Skea-Bardeen spheres , 2021, 2105.00441.
[18] A. Ditta,et al. Anisotropic stellar Finch-Skea structures satisfying Karmarkar condition in a teleparallel framework involving off-diagonal tetrad , 2021, The European Physical Journal Plus.
[19] A. Sarkar,et al. Behavior of anisotropic fluids with Chaplygin equation of state in Buchdahl spacetime , 2021, General Relativity and Gravitation.
[20] Y. Khedif,et al. Anisotropic compact stars via embedding approach in general relativity: new physical insights of stellar configurations , 2021, The European Physical Journal C.
[21] S. Maurya,et al. Minimally deformed charged anisotropic spherical solution , 2021, The European Physical Journal Plus.
[22] A. Sotomayor,et al. Braneworld‐Klein‐Gordon System in the Framework of Gravitational Decoupling , 2021, Fortschritte der Physik.
[23] G. Mustafa,et al. Embedding class one solutions of anisotropic fluid spheres in modified $$f({\mathcal {G}})$$ gravity , 2021 .
[24] M. Zubair,et al. An anisotropic version of Tolman VII solution in f(R, T) gravity via gravitational decoupling MGD approach , 2021, The European Physical Journal Plus.
[25] G. Mustafa,et al. Anisotropic spheres via embedding approach in R+βR2 gravity with matter coupling , 2021, 2101.00208.
[26] M. Zubair,et al. Anisotropic charged Heintzmann solution using gravitational decoupling through extended geometric deformation approach , 2021, Physica Scripta.
[27] M. Zubair,et al. Interior solutions of compact stars in f(T,T) gravity under Karmarkar condition , 2020 .
[28] G. Mustafa,et al. Bardeen stellar structures with Karmarkar condition , 2020, 2007.02409.
[29] Á. Rincón,et al. Anisotropic interior solution by gravitational decoupling based on a non-standard anisotropy , 2020, The European Physical Journal Plus.
[30] S. K. Maurya,et al. Extended gravitational decoupling (GD) solution for charged compact star model , 2020, The European Physical Journal C.
[31] S. K. Maurya,et al. Non-singular solution for anisotropic model by gravitational decoupling in the framework of complete geometric deformation (CGD) , 2020, The European Physical Journal C.
[32] M. Zubair,et al. Anisotropic Tolman V solution by minimal gravitational decoupling approach , 2020, 2005.06955.
[33] M. Sharif,et al. Anisotropic spherical solutions through extended gravitational decoupling approach , 2020, 2004.07925.
[34] M. Daoud,et al. Studies an analytic model of a spherically symmetric compact object in Einsteinian gravity , 2020, The European Physical Journal C.
[35] M. Sharif,et al. Anisotropic compact stars in self-interacting Brans-Dicke gravity , 2020 .
[36] M. K. Jasim,et al. A generalised embedding class one static solution describing anisotropic fluid sphere , 2020 .
[37] M. Estrada. Erratum to: A way of decoupling gravitational sources in pure Lovelock gravity , 2019, The European Physical Journal C.
[38] M. K. Jasim,et al. Minimally deformed anisotropic model of class one space-time by gravitational decoupling , 2019, The European Physical Journal C.
[39] A. Sotomayor,et al. Isotropization and change of complexity by gravitational decoupling , 2019, The European Physical Journal C.
[40] Á. Rincón,et al. Minimal geometric deformation in a Reissner–Nordström background , 2019, The European Physical Journal C.
[41] Z. Stuchlík,et al. Anisotropic Tolman VII solution by gravitational decoupling , 2019, The European Physical Journal C.
[42] A. Sotomayor,et al. A causal Schwarzschild-de Sitter interior solution by gravitational decoupling , 2019, The European Physical Journal C.
[43] C. Las Heras,et al. New algorithms to obtain analytical solutions of Einstein’s equations in isotropic coordinates , 2019, The European Physical Journal C.
[44] E. Sayouty,et al. A spherically symmetric model of anisotropic fluid for strange quark spheres , 2019, The European Physical Journal C.
[45] P. Bargueño,et al. A general interior anisotropic solution for a BTZ vacuum in the context of the minimal geometric deformation decoupling approach , 2019, The European Physical Journal C.
[46] S. K. Maurya,et al. Generalized relativistic anisotropic compact star models by gravitational decoupling , 2019, The European Physical Journal C.
[47] J. Ovalle. Decoupling gravitational sources in general relativity: The extended case , 2018, Physics Letters B.
[48] A. Sotomayor,et al. A simple method to generate exact physically acceptable anisotropic solutions in general relativity , 2018, The European Physical Journal Plus.
[49] Á. Rincón,et al. Minimal geometric deformation in a cloud of strings , 2018, The European Physical Journal C.
[50] F. Tello‐Ortiz,et al. Compact anisotropic models in general relativity by gravitational decoupling , 2018, The European Physical Journal C.
[51] Rafael Pérez Graterol. A new anisotropic solution by MGD gravitational decoupling , 2018 .
[52] P. Bargueño,et al. Minimal geometric deformation decoupling in $$2+1$$2+1 dimensional space–times , 2018, The European Physical Journal C.
[53] S. Maharaj,et al. New anisotropic fluid spheres from embedding , 2018 .
[54] P. León,et al. Using MGD Gravitational Decoupling to Extend the Isotropic Solutions of Einstein Equations to the Anisotropical Domain , 2018, Fortschritte der Physik.
[55] F. Tello‐Ortiz,et al. A new family of analytical anisotropic solutions by gravitational decoupling , 2018, The European Physical Journal Plus.
[56] Á. Rincón,et al. Gravitational decoupled anisotropies in compact stars , 2018, 1802.08000.
[57] M. Govender,et al. Generating physically realizable stellar structures via embedding , 2017, The European Physical Journal C.
[58] A. Sotomayor,et al. The Minimal Geometric Deformation Approach: A Brief Introduction , 2016, 1612.07926.
[59] C. Moustakidis. The stability of relativistic stars and the role of the adiabatic index , 2016, 1612.01726.
[60] Y. K. Gupta,et al. A new exact anisotropic solution of embedding class one , 2016 .
[61] Y. K. Gupta,et al. Anisotropic models for compact stars , 2015, 1504.00209.
[62] R. Rocha,et al. The minimal geometric deformation approach extended , 2015, 1503.02873.
[63] R. Casadio,et al. Classical tests of general relativity: Brane-world Sun from minimal geometric deformation , 2015, 1503.02316.
[64] F. Linares,et al. The role of exterior Weyl fluids on compact stellar structures in Randall–Sundrum gravity , 2013, 1304.5995.
[65] Y. K. Gupta,et al. A class of new solutions of generalized charged analogues of Buchdahl’s type super-dense star , 2013 .
[66] Y. K. Gupta,et al. A class of well behaved charged superdense star models of embedding class one , 2011 .
[67] Y. K. Gupta,et al. A class of well behaved charged analogues of Vaidya–Tikekar type super-dense star , 2011 .
[68] Pratibha,et al. A new class of charged analogues of Vaidya–Tikekar type super-dense star , 2011 .
[69] S. Ransom,et al. Shapiro delay measurement of a two solar mass neutron star , 2010, 1010.5788.
[70] J. Ovalle. Braneworld Stars: Anisotropy Minimally Projected Onto the Brane , 2009, 0909.0531.
[71] B. Nord,et al. Optical spectroscopy and photometry of SAX J1808.4−3658 in outburst , 2009, 0901.3991.
[72] L. Núñez,et al. Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects , 2007, 0706.3452.
[73] S. Maharaj,et al. Tikekar superdense stars in electric fields , 2007, gr-qc/0702102.
[74] C. Boehmer,et al. Bounds on the basic physical parameters for anisotropic compact general relativistic objects , 2006, gr-qc/0609061.
[75] N. Dadhich,et al. General solution for a relativistic star , 1997 .
[76] S. Maharaj,et al. Exact solutions for the Tikekar superdense star , 1996 .
[77] L. Herrera,et al. Negative energy density and classical electron models , 1994 .
[78] N. O. Santos,et al. Dynamical instability for radiating anisotropic collapse , 1993 .
[79] H. Bondi. Anisotropic spheres in general relativity , 1992 .
[80] L. Herrera,et al. Dynamical instability in the collapse of anisotropic matter , 1992 .
[81] R. Tikekar. Exact model for a relativistic star , 1990 .
[82] Norbert Straumann,et al. General Relativity and Relativistic Astrophysics , 1984 .
[83] D. Kazans. Neutrino viscosity in collapsing stellar cores , 1978 .
[84] W. Arnett. Neutrino trapping during gravitational collapse of stars. , 1977 .
[85] E. Liang,et al. Anisotropic spheres in general relativity , 1974 .
[86] M. Ruderman. Pulsars: Structure and Dynamics , 1972 .
[87] S. Chandrasekhar. The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity. , 1964 .