Spherically symmetric Buchdahl-type model via extended gravitational decoupling

[1]  M. Daoud,et al.  Role of Complexity on Self‐gravitating Compact Star by Gravitational Decoupling , 2022 .

[2]  S. Ray,et al.  Anisotropic stars in modified gravity: An extended gravitational decoupling approach , 2022, Chinese Physics C.

[3]  S. K. Maurya,et al.  Isotropization of embedding Class I spacetime and anisotropic system generated by complexity factor in the framework of gravitational decoupling , 2022, The European Physical Journal C.

[4]  K. Singh,et al.  Gravitationally decoupled anisotropic solution using polytropic EoS in the framework of 5D Einstein–Gauss–Bonnet Gravity , 2022, The European Physical Journal C.

[5]  S. K. Maurya,et al.  Role of gravitational decoupling on isotropization and complexity of self-gravitating system under complete geometric deformation approach , 2021, The European Physical Journal C.

[6]  S. Hansraj,et al.  Gravitationally Decoupled Strange Star Model beyond the Standard Maximum Mass Limit in Einstein–Gauss–Bonnet Gravity , 2021, The Astrophysical Journal.

[7]  E. Fuenmayor,et al.  Anisotropic star models in the context of vanishing complexity , 2021, Annals of Physics.

[8]  E. Contreras,et al.  Stellar models with like-Tolman IV complexity factor , 2021, The European Physical Journal C.

[9]  M. Govender,et al.  Exploring Physical Properties of Gravitationally Decoupled Anisotropic Solution in 5D Einstein‐Gauss‐Bonnet Gravity , 2021, Fortschritte der Physik.

[10]  M. Zubair,et al.  Charged anisotropic fluid sphere in comparison with its uncharged analogue through extended geometric deformation , 2021, Chinese Journal of Physics.

[11]  A. Banerjee,et al.  Minimally deformed anisotropic stars by gravitational decoupling in Einstein–Gauss–Bonnet gravity , 2021, The European Physical Journal C.

[12]  S. K. Maurya,et al.  Spherically symmetric anisotropic charged solution under complete geometric deformation approach , 2021, The European Physical Journal C.

[13]  M. Carrasco-Hidalgo,et al.  Ultracompact stars with polynomial complexity by gravitational decoupling , 2021, The European Physical Journal C.

[14]  Quratulien Muneer,et al.  Gravitational decoupled anisotropic spherical solutions in f(R, T) gravity by minimal geometric deformation approach , 2021, Physica Scripta.

[15]  J. Kumar,et al.  A generalized Buchdahl model for compact stars in f(R,T) gravity , 2021, Physics of the Dark Universe.

[16]  M. Daoud,et al.  A new well-behaved class of compact strange astrophysical model consistent with observational data , 2021, The European Physical Journal C.

[17]  G. Mustafa,et al.  Charged anisotropic Finch-Skea-Bardeen spheres , 2021, 2105.00441.

[18]  A. Ditta,et al.  Anisotropic stellar Finch-Skea structures satisfying Karmarkar condition in a teleparallel framework involving off-diagonal tetrad , 2021, The European Physical Journal Plus.

[19]  A. Sarkar,et al.  Behavior of anisotropic fluids with Chaplygin equation of state in Buchdahl spacetime , 2021, General Relativity and Gravitation.

[20]  Y. Khedif,et al.  Anisotropic compact stars via embedding approach in general relativity: new physical insights of stellar configurations , 2021, The European Physical Journal C.

[21]  S. Maurya,et al.  Minimally deformed charged anisotropic spherical solution , 2021, The European Physical Journal Plus.

[22]  A. Sotomayor,et al.  Braneworld‐Klein‐Gordon System in the Framework of Gravitational Decoupling , 2021, Fortschritte der Physik.

[23]  G. Mustafa,et al.  Embedding class one solutions of anisotropic fluid spheres in modified $$f({\mathcal {G}})$$ gravity , 2021 .

[24]  M. Zubair,et al.  An anisotropic version of Tolman VII solution in f(R, T) gravity via gravitational decoupling MGD approach , 2021, The European Physical Journal Plus.

[25]  G. Mustafa,et al.  Anisotropic spheres via embedding approach in R+βR2 gravity with matter coupling , 2021, 2101.00208.

[26]  M. Zubair,et al.  Anisotropic charged Heintzmann solution using gravitational decoupling through extended geometric deformation approach , 2021, Physica Scripta.

[27]  M. Zubair,et al.  Interior solutions of compact stars in f(T,T) gravity under Karmarkar condition , 2020 .

[28]  G. Mustafa,et al.  Bardeen stellar structures with Karmarkar condition , 2020, 2007.02409.

[29]  Á. Rincón,et al.  Anisotropic interior solution by gravitational decoupling based on a non-standard anisotropy , 2020, The European Physical Journal Plus.

[30]  S. K. Maurya,et al.  Extended gravitational decoupling (GD) solution for charged compact star model , 2020, The European Physical Journal C.

[31]  S. K. Maurya,et al.  Non-singular solution for anisotropic model by gravitational decoupling in the framework of complete geometric deformation (CGD) , 2020, The European Physical Journal C.

[32]  M. Zubair,et al.  Anisotropic Tolman V solution by minimal gravitational decoupling approach , 2020, 2005.06955.

[33]  M. Sharif,et al.  Anisotropic spherical solutions through extended gravitational decoupling approach , 2020, 2004.07925.

[34]  M. Daoud,et al.  Studies an analytic model of a spherically symmetric compact object in Einsteinian gravity , 2020, The European Physical Journal C.

[35]  M. Sharif,et al.  Anisotropic compact stars in self-interacting Brans-Dicke gravity , 2020 .

[36]  M. K. Jasim,et al.  A generalised embedding class one static solution describing anisotropic fluid sphere , 2020 .

[37]  M. Estrada Erratum to: A way of decoupling gravitational sources in pure Lovelock gravity , 2019, The European Physical Journal C.

[38]  M. K. Jasim,et al.  Minimally deformed anisotropic model of class one space-time by gravitational decoupling , 2019, The European Physical Journal C.

[39]  A. Sotomayor,et al.  Isotropization and change of complexity by gravitational decoupling , 2019, The European Physical Journal C.

[40]  Á. Rincón,et al.  Minimal geometric deformation in a Reissner–Nordström background , 2019, The European Physical Journal C.

[41]  Z. Stuchlík,et al.  Anisotropic Tolman VII solution by gravitational decoupling , 2019, The European Physical Journal C.

[42]  A. Sotomayor,et al.  A causal Schwarzschild-de Sitter interior solution by gravitational decoupling , 2019, The European Physical Journal C.

[43]  C. Las Heras,et al.  New algorithms to obtain analytical solutions of Einstein’s equations in isotropic coordinates , 2019, The European Physical Journal C.

[44]  E. Sayouty,et al.  A spherically symmetric model of anisotropic fluid for strange quark spheres , 2019, The European Physical Journal C.

[45]  P. Bargueño,et al.  A general interior anisotropic solution for a BTZ vacuum in the context of the minimal geometric deformation decoupling approach , 2019, The European Physical Journal C.

[46]  S. K. Maurya,et al.  Generalized relativistic anisotropic compact star models by gravitational decoupling , 2019, The European Physical Journal C.

[47]  J. Ovalle Decoupling gravitational sources in general relativity: The extended case , 2018, Physics Letters B.

[48]  A. Sotomayor,et al.  A simple method to generate exact physically acceptable anisotropic solutions in general relativity , 2018, The European Physical Journal Plus.

[49]  Á. Rincón,et al.  Minimal geometric deformation in a cloud of strings , 2018, The European Physical Journal C.

[50]  F. Tello‐Ortiz,et al.  Compact anisotropic models in general relativity by gravitational decoupling , 2018, The European Physical Journal C.

[51]  Rafael Pérez Graterol A new anisotropic solution by MGD gravitational decoupling , 2018 .

[52]  P. Bargueño,et al.  Minimal geometric deformation decoupling in $$2+1$$2+1 dimensional space–times , 2018, The European Physical Journal C.

[53]  S. Maharaj,et al.  New anisotropic fluid spheres from embedding , 2018 .

[54]  P. León,et al.  Using MGD Gravitational Decoupling to Extend the Isotropic Solutions of Einstein Equations to the Anisotropical Domain , 2018, Fortschritte der Physik.

[55]  F. Tello‐Ortiz,et al.  A new family of analytical anisotropic solutions by gravitational decoupling , 2018, The European Physical Journal Plus.

[56]  Á. Rincón,et al.  Gravitational decoupled anisotropies in compact stars , 2018, 1802.08000.

[57]  M. Govender,et al.  Generating physically realizable stellar structures via embedding , 2017, The European Physical Journal C.

[58]  A. Sotomayor,et al.  The Minimal Geometric Deformation Approach: A Brief Introduction , 2016, 1612.07926.

[59]  C. Moustakidis The stability of relativistic stars and the role of the adiabatic index , 2016, 1612.01726.

[60]  Y. K. Gupta,et al.  A new exact anisotropic solution of embedding class one , 2016 .

[61]  Y. K. Gupta,et al.  Anisotropic models for compact stars , 2015, 1504.00209.

[62]  R. Rocha,et al.  The minimal geometric deformation approach extended , 2015, 1503.02873.

[63]  R. Casadio,et al.  Classical tests of general relativity: Brane-world Sun from minimal geometric deformation , 2015, 1503.02316.

[64]  F. Linares,et al.  The role of exterior Weyl fluids on compact stellar structures in Randall–Sundrum gravity , 2013, 1304.5995.

[65]  Y. K. Gupta,et al.  A class of new solutions of generalized charged analogues of Buchdahl’s type super-dense star , 2013 .

[66]  Y. K. Gupta,et al.  A class of well behaved charged superdense star models of embedding class one , 2011 .

[67]  Y. K. Gupta,et al.  A class of well behaved charged analogues of Vaidya–Tikekar type super-dense star , 2011 .

[68]  Pratibha,et al.  A new class of charged analogues of Vaidya–Tikekar type super-dense star , 2011 .

[69]  S. Ransom,et al.  Shapiro delay measurement of a two solar mass neutron star , 2010, 1010.5788.

[70]  J. Ovalle Braneworld Stars: Anisotropy Minimally Projected Onto the Brane , 2009, 0909.0531.

[71]  B. Nord,et al.  Optical spectroscopy and photometry of SAX J1808.4−3658 in outburst , 2009, 0901.3991.

[72]  L. Núñez,et al.  Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects , 2007, 0706.3452.

[73]  S. Maharaj,et al.  Tikekar superdense stars in electric fields , 2007, gr-qc/0702102.

[74]  C. Boehmer,et al.  Bounds on the basic physical parameters for anisotropic compact general relativistic objects , 2006, gr-qc/0609061.

[75]  N. Dadhich,et al.  General solution for a relativistic star , 1997 .

[76]  S. Maharaj,et al.  Exact solutions for the Tikekar superdense star , 1996 .

[77]  L. Herrera,et al.  Negative energy density and classical electron models , 1994 .

[78]  N. O. Santos,et al.  Dynamical instability for radiating anisotropic collapse , 1993 .

[79]  H. Bondi Anisotropic spheres in general relativity , 1992 .

[80]  L. Herrera,et al.  Dynamical instability in the collapse of anisotropic matter , 1992 .

[81]  R. Tikekar Exact model for a relativistic star , 1990 .

[82]  Norbert Straumann,et al.  General Relativity and Relativistic Astrophysics , 1984 .

[83]  D. Kazans Neutrino viscosity in collapsing stellar cores , 1978 .

[84]  W. Arnett Neutrino trapping during gravitational collapse of stars. , 1977 .

[85]  E. Liang,et al.  Anisotropic spheres in general relativity , 1974 .

[86]  M. Ruderman Pulsars: Structure and Dynamics , 1972 .

[87]  S. Chandrasekhar The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity. , 1964 .