Review of the studies on fundamental issues in LBE corrosion

Lead bismuth eutectic (LBE) technology is being developed for applications in advanced nuclear systems and high-power spallation neutron targets. In this paper, the current understanding of corrosion and the fundamental issues relevant to corrosion when using LBE as a heavy liquid metal nuclear coolant are reviewed. Corrosion mechanisms and processes in LBE are examined. Prospective methods to mitigate corrosion are briefly surveyed. We then discuss the oxygen control technique for corrosion mitigation in detail, including the range of oxygen concentrations in LBE, oxygen sensors, and the surface oxidation kinetics. Existing experimental results are summarized and reviewed. Theoretical corrosion models for non-isothermal liquid metal loops are refined and compared each other. The applications of these models to a few practical lead-alloy systems are used to illustrate the corrosion mechanisms and the parameter dependency, and to benchmark. Based on the current state of knowledge, a number of R&D tasks are proposed to fill the gaps and firmly establish the scientific underpinning before LBE nuclear coolant technology is ready for programmatic and industrial applications.

[1]  D. Wolf,et al.  Correlation and isotope effects for cation diffusion in magnetite , 1980 .

[2]  C. Fazio,et al.  Compatibility tests of steels in flowing liquid lead–bismuth , 2001 .

[3]  Samuel Glasstone,et al.  The Theory Of Rate Processes , 1941 .

[4]  Ning Li,et al.  Active control of oxygen in molten lead–bismuth eutectic systems to prevent steel corrosion and coolant contamination , 2000 .

[5]  Ning Li,et al.  A kinetic model for corrosion and precipitation in non-isothermal LBE flow loop , 2001 .

[6]  M. Harada,et al.  MUTUAL DIFFUSION COEFFICIENT IN MOLTEN LEAD-BISMUTH MIXTURES , 1983 .

[7]  S. S. Kutateladze,et al.  Liquid-metal heat transfer media , 1959 .

[8]  K. Okajima,et al.  Activity Measurements of Binary Pb–X Molten Alloys by the TIE Method , 1968 .

[9]  A. J. Romano,et al.  Liquidus Curves and Corrosion of Fe, Ti, Zr, and Cu in Liquid Bi-Pb Alloys , 1969 .

[10]  C. Valot,et al.  Influence of Preoxidation on the Corrosion of Steels in Liquid Lead-Bismuth Eutectic, November 2004 , 2004 .

[11]  Ning Li,et al.  Dynamics of high-temperature oxidation accompanied by scale removal and implications for technological applications , 2005 .

[12]  G. Samsonov,et al.  The Oxide Handbook , 1973 .

[13]  F. Barbier,et al.  Investigation of models to predict the corrosion of steels in flowing liquid lead alloys , 2001 .

[14]  E. Heitz,et al.  CHEMO-MECHANICAL EFFECTS OF FLOW ON CORROSION , 1991 .

[15]  A. J. Romano,et al.  THE INVESTIGATION OF CONTAINER MATERIALS FOR Bi AND Pb ALLOYS. PART I. THERMAL CONVECTION LOOPS , 1963 .

[16]  Frank Zimmermann,et al.  Investigation on oxygen controlled liquid lead corrosion of surface treated steels , 2000 .

[17]  R. Ganesan,et al.  Diffusivity, activity and solubility of oxygen in liquid lead and lead–bismuth eutectic alloy by electrochemical methods , 2006 .

[18]  C. Wagner Thermodynamics of alloys , 1952 .

[19]  A. Rusanov,et al.  Oxide Protection of Materials in Melts of Lead and Bismuth , 2000 .

[20]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[21]  J. Osterwald,et al.  Elektrochemische Gleichgewichts-und Diffusionsuntersuchungen am System Blei—Sauerstoff , 1976 .

[22]  E. Somerscales Fundamentals of corrosion fouling , 1997 .

[23]  A. Mikula Thermodynamic properties of liquid bismuth—Lead alloys , 1986 .

[24]  P. Tortorelli,et al.  Corrosion and compatibility considerations of liquid metals for fusion reactor applications , 1981 .

[25]  J. R. Weeks,et al.  Lead, bismuth, tin and their alloys as nuclear coolants☆ , 1971 .

[26]  Frank Zimmermann,et al.  Results of steel corrosion tests in flowing liquid Pb/Bi at 420-600 °C after 2000 h , 2002 .

[27]  L. S. Crespo,et al.  Influence of temperature on the oxidation/corrosion process of F82Hmod. martensitic steel in lead–bismuth , 2002 .

[28]  Jinsuo Zhang,et al.  Oxidation Mechanism of Steels in Liquid–Lead Alloys , 2005 .

[29]  K. Fitzner Diffusivity, activity and solubility of oxygen in liquid bismuth , 1980 .

[30]  H. Muscher,et al.  Development of oxygen meters for the use in lead–bismuth , 2001 .

[31]  E. M. Lyutyi Problems of high-temperature liquid-metal corrosion of refractory metals and alloys , 1989 .

[32]  D. C. Silverman Rotating Cylinder Electrode for Velocity Sensitivity Testing , 1984 .

[33]  G. Benamati,et al.  Temperature effect on the corrosion mechanism of austenitic and martensitic steels in lead–bismuth , 2002 .

[34]  S. Saito,et al.  Corrosion–erosion test of SS316 in flowing Pb–Bi , 2003 .

[35]  L. S. Crespo,et al.  Behaviour of F82H mod. stainless steel in lead–bismuth under temperature gradient , 2001 .

[36]  V. Venugopal,et al.  A thermodynamic study of lead + bismuth using a transpiration technique , 1977 .

[37]  D. T. Hawkins,et al.  Selected values of the thermodynamic properties of binary alloys , 1973 .

[38]  J. Chipman,et al.  THE THERMODYNAMIC PROPERTIES OF LIQUID TERNARY CADMIUM SOLUTIONS , 1951 .

[39]  Z. Kozuka,et al.  Activities of oxygen in liquid Bi-Pb and Bi-Sb alloys , 1984 .

[40]  M. Hansen,et al.  Constitution of Binary Alloys , 1958 .

[41]  D. Stevenson,et al.  An electrochemical study of the solubility and diffusivity of oxygen in the respective liquid metals indium, gallium, antimony and bismuth , 1981 .

[42]  H. Borgstedt,et al.  Liquid Metal Systems , 1995 .

[43]  A. Rusanov,et al.  Corrosion behavior of steels in flowing lead–bismuth , 2001 .

[44]  Ning Li,et al.  Improved Application of Local Models to Steel Corrosion in Lead-Bismuth Loops , 2003 .

[45]  J. A. Fernández,et al.  Development of an oxygen sensor for molter 44.5% lead–55.5% bismuth alloy , 2002 .

[46]  R. Fruehan Mass spectrometric determination of activities for alloys with complex vapor species: Bi-Pb and Bi-Tl , 1971 .

[47]  Jinsuo Zhang,et al.  Corrosion/precipitation in non-isothermal and multi-modular LBE loop systems , 2004 .

[48]  G. Santarini,et al.  Etude de la corrosion de deux aciers ferritiques par le plomb liquide circulant dans un thermosiphon; recherche d'un modele , 1982 .

[49]  Ning Li,et al.  Parametric study of a corrosion model applied to lead–bismuth flow systems , 2003 .

[50]  R. Hultgren,et al.  Selected Values of Thermodynamic Properties of Metals and Alloys , 1963 .

[51]  D. Butt,et al.  Review of liquid metal corrosion issues for potential containment materials for liquid lead and lead–bismuth eutectic spallation targets as a neutron source , 2000 .

[52]  A. Atkinson Transport processes during the growth of oxide films at elevated temperature , 1985 .

[53]  J. Weeks,et al.  Reactions Between Steel Surfaces and Zirconium in Liquid Bismuth , 1960 .

[54]  D. Stevenson,et al.  Thermodynamic investigation of antimony + oxygen and bismuth + oxygen using solidstate electrochemical techniques , 1979 .

[55]  F. Berger,et al.  MASS TRANSFER IN TURBULENT PIPE FLOW MEASURED BY THE ELECTROCHEMICAL METHOD , 1977 .

[56]  A. Weisenburger,et al.  Corrosion Behavior of FBR Candidate Materials in Stagnant Pb-Bi at Elevated Temperature , 2004 .

[57]  J. U. Knebel,et al.  Kinetics of gas phase oxygen control system (OCS) for stagnant and flowing Pb–Bi Systems , 2001 .

[58]  F. Balbaud-Célérier,et al.  Corrosion of metallic materials in flowing liquid lead-bismuth , 2002 .

[59]  U. Gonser Bestimmung thermodynamischer Aktivitäten mittels radioaktiver Isotope. , 1954 .

[60]  G. Mueller,et al.  Corrosion investigations of steels in flowing lead at 400°C and 550°C , 2001 .

[61]  P. Harriott,et al.  Solid-liquid mass transfer in turbulent pipe flow , 1965 .

[62]  Georgi Ilinčev,et al.  Research results on the corrosion effects of liquid heavy metals Pb, Bi and Pb–Bi on structural materials with and without corrosion inhibitors , 2002 .

[63]  I. Ricapito,et al.  Corrosion behaviour of steels and refractory metals and tensile features of steels exposed to flowing PbBi in the LECOR loop , 2003 .

[64]  Ning Li,et al.  Corrosion Behaviors of US Steels in Flowing Lead-Bismuth Eutectic (LBE) , 2005 .

[65]  Alfons Weisenburger,et al.  Control of oxygen concentration in liquid lead and lead-bismuth , 2003 .

[66]  M. Bouchacourt,et al.  Flow-assisted corrosion: a method to avoid damage , 1992 .

[67]  L. S. Crespo,et al.  Short-term static corrosion tests in lead–bismuth , 2001 .

[68]  Robert W. Lyczkowski,et al.  State-of-the-art review of erosion modeling in fluid/solids systems , 2002 .

[69]  Min-Xian Zhang,et al.  The solubility of gases in liquid metals and alloys , 1988 .

[70]  Ning Li,et al.  Oxygen Control Technique in Molten Lead and Lead-Bismuth Eutectic Systems , 2006 .

[71]  G. Benamati,et al.  Preliminary studies on PbO reduction in liquid Pb–Bi eutectic by flowing hydrogen , 2002 .

[72]  G. Benamati,et al.  Compatibility tests on steels in molten lead and lead-bismuth , 2001 .