Robust biased estimators for Poisson regression model: Simulation and applications

The method of maximum likelihood flops when there is linear dependency (multicollinearity) and outlier in the generalized linear models. In this study, we combined the ridge estimator with the transformed M‐estimator (MT) and the conditionally unbiased bounded influence estimator (CE). The two new estimators are called the robust MT estimator and Robust‐CE. A Monte Carlo study revealed that the proposed estimators dominate for the generalized linear models with Poisson response and log link function. The real‐life application results support the simulation outcome.

[1]  M. Abonazel,et al.  Developing robust ridge estimators for Poisson regression model , 2022, Concurr. Comput. Pract. Exp..

[2]  Shalabh Theory of ridge regression estimation with applicationsA.K. Md. EhsanesSaleh, MohammadArashi, B.M. GolamKibria, 2019John Wiley & Sons, Inc., Hobokon, pp. xxxiv + 342, ISBN 97811186446148 , 2022, Journal of the Royal Statistical Society: Series A (Statistics in Society).

[3]  K. Månsson,et al.  A new class of efficient and debiased two-step shrinkage estimators: method and application , 2021, Journal of applied statistics.

[4]  Abdi Hassan Muse,et al.  Influence Diagnostic Methods in the Poisson Regression Model with the Liu Estimator , 2021, Comput. Intell. Neurosci..

[5]  M. Abonazel,et al.  Robust Dawoud–Kibria estimator for handling multicollinearity and outliers in the linear regression model , 2021, Journal of Statistical Computation and Simulation.

[6]  M. Gasparini,et al.  Ridge regression and its applications in genetic studies , 2021, PloS one.

[7]  D. M. Sakate,et al.  Robust variable selection via penalized MT-estimator in generalized linear models , 2021, Communications in Statistics - Theory and Methods.

[8]  Mohamed R. Abonazel,et al.  Modified ridge-type for the Poisson regression model: simulation and application , 2021, Journal of applied statistics.

[9]  N. H. Jadhav,et al.  A new linearized ridge Poisson estimator in the presence of multicollinearity , 2021, Journal of applied statistics.

[10]  A. Lukman,et al.  A new estimator for the multicollinear Poisson regression model: simulation and application , 2021, Scientific Reports.

[11]  Alfio Marazzi,et al.  Improving the Efficiency of Robust Estimators for the Generalized Linear Model , 2021, Stats.

[12]  Muhammad Amin,et al.  On the estimation of Bell regression model using ridge estimator , 2021, Commun. Stat. Simul. Comput..

[13]  B. M. Kibria,et al.  A New Biased Estimator to Combat the Multicollinearity of the Gaussian Linear Regression Model , 2020, Stats.

[14]  Muhammad Amin,et al.  Performance of some new Liu parameters for the linear regression model , 2020, Communications in Statistics - Theory and Methods.

[15]  B. M. Golam Kibria,et al.  Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model , 2020, TheScientificWorldJournal.

[16]  A. Lukman,et al.  A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications , 2020, Scientifica.

[17]  A. Lukman,et al.  A Modified New Two-Parameter Estimator in a Linear Regression Model , 2019, Modelling and Simulation in Engineering.

[18]  A. Lukman,et al.  Modified ridge‐type estimator to combat multicollinearity: Application to chemical data , 2019, Journal of Chemometrics.

[19]  Z. Algamal,et al.  Proposed methods in estimating the ridge regression parameter in Poisson regression model , 2018 .

[20]  Hasan Ertas,et al.  A modified ridge m-estimator for linear regression model with multicollinearity and outliers , 2018, Commun. Stat. Simul. Comput..

[21]  A. Lukman,et al.  Review and classications of the ridge parameter estimation techniques , 2017 .

[22]  Selahattin Kaçiranlar,et al.  Robust Liu-type estimator for regression based on M-estimator , 2015, Commun. Stat. Simul. Comput..

[23]  A. Lukman,et al.  Robust Regression Diagnostics of Influential Observations in Linear Regression Model , 2015 .

[24]  B. M. Golam Kibria,et al.  A Simulation Study of Some Biasing Parameters for the Ridge Type Estimation of Poisson Regression , 2015, Commun. Stat. Simul. Comput..

[25]  William H. Aeberhard,et al.  Robust inference in the negative binomial regression model with an application to falls data , 2014, Biometrics.

[26]  A. Basu,et al.  Robust estimation in generalized linear models: the density power divergence approach , 2014, TEST.

[27]  Victor J. Yohai,et al.  Robust estimators for generalized linear models , 2014 .

[28]  Kristofer Månsson,et al.  A Poisson ridge regression estimator , 2011 .

[29]  Christophe Croux,et al.  Implementing the Bianco and Yohai estimator for logistic regression , 2003, Comput. Stat. Data Anal..

[30]  R. H. Myers Generalized Linear Models: With Applications in Engineering and the Sciences , 2001 .

[31]  E. Ronchetti,et al.  Robust Inference for Generalized Linear Models , 2001 .

[32]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[33]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[34]  Mervyn J. Silvapulle,et al.  ROBUST RIDGE REGRESSION BASED ON AN M-ESTIMATOR , 1991 .

[35]  R. Carroll,et al.  Conditionally Unbiased Bounded-Influence Estimation in General Regression Models, with Applications to Generalized Linear Models , 1989 .

[36]  S. Chatterjee,et al.  Influential Observations, High Leverage Points, and Outliers in Linear Regression , 1986 .

[37]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[38]  Hassan M. Aljohani,et al.  Influence diagnostics for the Poisson regression model using two-parameter estimator , 2021 .

[39]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[40]  Peter Filzmoser,et al.  Robust joint modeling of mean and dispersion through trimming , 2012, Comput. Stat. Data Anal..

[41]  N. Breslow,et al.  Generalized Linear Models: Checking Assumptions and Strengthening Conclusions , 2022 .

[42]  A. Christmann Robust Estimation in Generalized Linear Models , 2001 .

[43]  Ana M. Bianco,et al.  Robust Estimation in the Logistic Regression Model , 1996 .

[44]  Liu Kejian,et al.  A new class of blased estimate in linear regression , 1993 .

[45]  Peter J. Rousseeuw,et al.  ROBUST REGRESSION BY MEANS OF S-ESTIMATORS , 1984 .