Robust biased estimators for Poisson regression model: Simulation and applications
暂无分享,去创建一个
[1] M. Abonazel,et al. Developing robust ridge estimators for Poisson regression model , 2022, Concurr. Comput. Pract. Exp..
[2] Shalabh. Theory of ridge regression estimation with applicationsA.K. Md. EhsanesSaleh, MohammadArashi, B.M. GolamKibria, 2019John Wiley & Sons, Inc., Hobokon, pp. xxxiv + 342, ISBN 97811186446148 , 2022, Journal of the Royal Statistical Society: Series A (Statistics in Society).
[3] K. Månsson,et al. A new class of efficient and debiased two-step shrinkage estimators: method and application , 2021, Journal of applied statistics.
[4] Abdi Hassan Muse,et al. Influence Diagnostic Methods in the Poisson Regression Model with the Liu Estimator , 2021, Comput. Intell. Neurosci..
[5] M. Abonazel,et al. Robust Dawoud–Kibria estimator for handling multicollinearity and outliers in the linear regression model , 2021, Journal of Statistical Computation and Simulation.
[6] M. Gasparini,et al. Ridge regression and its applications in genetic studies , 2021, PloS one.
[7] D. M. Sakate,et al. Robust variable selection via penalized MT-estimator in generalized linear models , 2021, Communications in Statistics - Theory and Methods.
[8] Mohamed R. Abonazel,et al. Modified ridge-type for the Poisson regression model: simulation and application , 2021, Journal of applied statistics.
[9] N. H. Jadhav,et al. A new linearized ridge Poisson estimator in the presence of multicollinearity , 2021, Journal of applied statistics.
[10] A. Lukman,et al. A new estimator for the multicollinear Poisson regression model: simulation and application , 2021, Scientific Reports.
[11] Alfio Marazzi,et al. Improving the Efficiency of Robust Estimators for the Generalized Linear Model , 2021, Stats.
[12] Muhammad Amin,et al. On the estimation of Bell regression model using ridge estimator , 2021, Commun. Stat. Simul. Comput..
[13] B. M. Kibria,et al. A New Biased Estimator to Combat the Multicollinearity of the Gaussian Linear Regression Model , 2020, Stats.
[14] Muhammad Amin,et al. Performance of some new Liu parameters for the linear regression model , 2020, Communications in Statistics - Theory and Methods.
[15] B. M. Golam Kibria,et al. Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model , 2020, TheScientificWorldJournal.
[16] A. Lukman,et al. A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications , 2020, Scientifica.
[17] A. Lukman,et al. A Modified New Two-Parameter Estimator in a Linear Regression Model , 2019, Modelling and Simulation in Engineering.
[18] A. Lukman,et al. Modified ridge‐type estimator to combat multicollinearity: Application to chemical data , 2019, Journal of Chemometrics.
[19] Z. Algamal,et al. Proposed methods in estimating the ridge regression parameter in Poisson regression model , 2018 .
[20] Hasan Ertas,et al. A modified ridge m-estimator for linear regression model with multicollinearity and outliers , 2018, Commun. Stat. Simul. Comput..
[21] A. Lukman,et al. Review and classications of the ridge parameter estimation techniques , 2017 .
[22] Selahattin Kaçiranlar,et al. Robust Liu-type estimator for regression based on M-estimator , 2015, Commun. Stat. Simul. Comput..
[23] A. Lukman,et al. Robust Regression Diagnostics of Influential Observations in Linear Regression Model , 2015 .
[24] B. M. Golam Kibria,et al. A Simulation Study of Some Biasing Parameters for the Ridge Type Estimation of Poisson Regression , 2015, Commun. Stat. Simul. Comput..
[25] William H. Aeberhard,et al. Robust inference in the negative binomial regression model with an application to falls data , 2014, Biometrics.
[26] A. Basu,et al. Robust estimation in generalized linear models: the density power divergence approach , 2014, TEST.
[27] Victor J. Yohai,et al. Robust estimators for generalized linear models , 2014 .
[28] Kristofer Månsson,et al. A Poisson ridge regression estimator , 2011 .
[29] Christophe Croux,et al. Implementing the Bianco and Yohai estimator for logistic regression , 2003, Comput. Stat. Data Anal..
[30] R. H. Myers. Generalized Linear Models: With Applications in Engineering and the Sciences , 2001 .
[31] E. Ronchetti,et al. Robust Inference for Generalized Linear Models , 2001 .
[32] Arthur E. Hoerl,et al. Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.
[33] N. Breslow,et al. Approximate inference in generalized linear mixed models , 1993 .
[34] Mervyn J. Silvapulle,et al. ROBUST RIDGE REGRESSION BASED ON AN M-ESTIMATOR , 1991 .
[35] R. Carroll,et al. Conditionally Unbiased Bounded-Influence Estimation in General Regression Models, with Applications to Generalized Linear Models , 1989 .
[36] S. Chatterjee,et al. Influential Observations, High Leverage Points, and Outliers in Linear Regression , 1986 .
[37] P. J. Huber. Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .
[38] Hassan M. Aljohani,et al. Influence diagnostics for the Poisson regression model using two-parameter estimator , 2021 .
[39] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[40] Peter Filzmoser,et al. Robust joint modeling of mean and dispersion through trimming , 2012, Comput. Stat. Data Anal..
[41] N. Breslow,et al. Generalized Linear Models: Checking Assumptions and Strengthening Conclusions , 2022 .
[42] A. Christmann. Robust Estimation in Generalized Linear Models , 2001 .
[43] Ana M. Bianco,et al. Robust Estimation in the Logistic Regression Model , 1996 .
[44] Liu Kejian,et al. A new class of blased estimate in linear regression , 1993 .
[45] Peter J. Rousseeuw,et al. ROBUST REGRESSION BY MEANS OF S-ESTIMATORS , 1984 .