Uridylation and adenylation of RNAs

[1]  Xuemei Chen,et al.  Uridylation of miRNAs by HEN 1 SUPPRESSOR 1 in Arabidopsis , 2017 .

[2]  E. Izaurralde Breakers and blockers—miRNAs at work , 2015, Science.

[3]  Stefan L Ameres,et al.  Selective Suppression of the Splicing-Mediated MicroRNA Pathway by the Terminal Uridyltransferase Tailor. , 2015, Molecular cell.

[4]  Veronika A. Herzog,et al.  Uridylation of RNA Hairpins by Tailor Confines the Emergence of MicroRNAs in Drosophila , 2015, Molecular cell.

[5]  E. Izaurralde,et al.  Towards a molecular understanding of microRNA-mediated gene silencing , 2015, Nature Reviews Genetics.

[6]  D. Patel,et al.  TUT7 controls the fate of precursor microRNAs by using three different uridylation mechanisms , 2015, The EMBO journal.

[7]  Xuemei Chen,et al.  Distinct and Cooperative Activities of HESO1 and URT1 Nucleotidyl Transferases in MicroRNA Turnover in Arabidopsis , 2015, PLoS genetics.

[8]  Xuemei Chen,et al.  Synergistic and Independent Actions of Multiple Terminal Nucleotidyl Transferases in the 3’ Tailing of Small RNAs in Arabidopsis , 2015, PLoS genetics.

[9]  D. Patel,et al.  Adenylation of maternally inherited microRNAs by Wispy. , 2014, Molecular cell.

[10]  J. Rappsilber,et al.  Trim25 Is an RNA-Specific Activator of Lin28a/TuT4-Mediated Uridylation , 2014, Cell reports.

[11]  B. Ylstra,et al.  Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. , 2014, Cell reports.

[12]  P. Alexiou,et al.  A MicroRNA precursor surveillance system in quality control of MicroRNA synthesis. , 2014, Molecular cell.

[13]  L. Zon,et al.  Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4) , 2014, Nucleic acids research.

[14]  Piero Carninci,et al.  PAPD5-mediated 3′ adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease , 2014, Proceedings of the National Academy of Sciences.

[15]  V. Heissmeyer,et al.  Degradation of oligouridylated histone mRNAs: see UUUUU and goodbye , 2014, Wiley interdisciplinary reviews. RNA.

[16]  L. Joshua-Tor,et al.  Mechanism of Dis3L2 substrate recognition in the Lin28/let-7 pathway , 2014, Nature.

[17]  Xuemei Chen,et al.  Methylation protects microRNAs from an AGO1-associated activity that uridylates 5′ RNA fragments generated by AGO1 cleavage , 2014, Proceedings of the National Academy of Sciences.

[18]  Joshua D. Welch,et al.  Deep sequencing shows multiple oligouridylations are required for 3' to 5' degradation of histone mRNAs on polyribosomes. , 2014, Molecular cell.

[19]  C. Kambach,et al.  The C-terminal extension of Lsm4 interacts directly with the 3′ end of the histone mRNP and is required for efficient histone mRNA degradation , 2014, RNA.

[20]  L. Zon,et al.  Selective microRNA uridylation by Zcchc 6 ( TUT 7 ) and Zcchc 11 ( TUT 4 ) , 2014 .

[21]  Š. Vaňáčová,et al.  Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs , 2013, RNA.

[22]  J. Deragon,et al.  Uridylation prevents 3′ trimming of oligoadenylated mRNAs , 2013, Nucleic acids research.

[23]  C. Norbury,et al.  RNA decay via 3' uridylation. , 2013, Biochimica et biophysica acta.

[24]  R. Gregory,et al.  A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway , 2013, Nature.

[25]  P. Golik,et al.  The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway , 2013, The EMBO journal.

[26]  P. Campbell,et al.  Aberrant 3' oligoadenylation of spliceosomal U6 small nuclear RNA in poikiloderma with neutropenia. , 2013, Blood.

[27]  E. Kremmer,et al.  Eri1 degrades the stem-loop of oligouridylated histone mRNAs to induce replication-dependent decay , 2012, Nature Structural &Molecular Biology.

[28]  Michael K. Slevin,et al.  mRNAs containing the histone 3' stem-loop are degraded primarily by decapping mediated by oligouridylation of the 3' end. , 2013, RNA.

[29]  Wen-Hsiung Li,et al.  MicroRNA 3' end nucleotide modification patterns and arm selection preference in liver tissues , 2012, BMC Systems Biology.

[30]  P. Gunaratne,et al.  The Repertoire and Features of Human Platelet microRNAs , 2012, PloS one.

[31]  Samantha A. Morris,et al.  Zcchc11 Uridylates Mature miRNAs to Enhance Neonatal IGF-1 Expression, Growth, and Survival , 2012, PLoS genetics.

[32]  Hyeshik Chang,et al.  Mono-Uridylation of Pre-MicroRNA as a Key Step in the Biogenesis of Group II let-7 MicroRNAs , 2012, Cell.

[33]  R. Gregory,et al.  Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). , 2012, RNA.

[34]  Lucas J. T. Kaaij,et al.  Differential Impact of the HEN1 Homolog HENN-1 on 21U and 26G RNAs in the Germline of Caenorhabditis elegans , 2012, PLoS genetics.

[35]  J. G. Patton,et al.  Transcriptome-wide analysis of small RNA expression in early zebrafish development. , 2012, RNA.

[36]  Xuemei Chen,et al.  Uridylation of miRNAs by HEN1 SUPPRESSOR1 in Arabidopsis , 2012, Current Biology.

[37]  Xuemei Chen,et al.  The Arabidopsis Nucleotidyl Transferase HESO1 Uridylates Unmethylated Small RNAs to Trigger Their Degradation , 2012, Current Biology.

[38]  John K. Kim,et al.  The Caenorhabditis elegans HEN1 Ortholog, HENN-1, Methylates and Stabilizes Select Subclasses of Germline Small RNAs , 2012, PLoS genetics.

[39]  G. Ruvkun,et al.  PIWI Associated siRNAs and piRNAs Specifically Require the Caenorhabditis elegans HEN1 Ortholog henn-1 , 2012, PLoS genetics.

[40]  E. Lai,et al.  Common and distinct patterns of terminal modifications to mirtrons and canonical microRNAs. , 2012, RNA.

[41]  Vidya Mani,et al.  Deep sequencing of microRNA precursors reveals extensive 3' end modification. , 2011, RNA.

[42]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[43]  Robert D. Finn,et al.  HMMER web server: interactive sequence similarity searching , 2011, Nucleic Acids Res..

[44]  Ravi Sachidanandam,et al.  Kinetic Analysis Reveals the Fate of a MicroRNA following Target Regulation in Mammalian Cells , 2011, Current Biology.

[45]  A. D’Ambrogio,et al.  CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation , 2011, Nature.

[46]  Michael Chen,et al.  Computational and experimental identification of mirtrons in Drosophila melanogaster and Caenorhabditis elegans. , 2011, Genome research.

[47]  Ammar S Naqvi,et al.  Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. , 2011, Genome research.

[48]  C. Norbury,et al.  The human cytoplasmic RNA terminal U-transferase ZCCHC11 targets histone mRNAs for degradation. , 2011, RNA.

[49]  V. Kim,et al.  Modifications of Small RNAs and Their Associated Proteins , 2010, Cell.

[50]  Lucas J. T. Kaaij,et al.  Hen1 is required for oocyte development and piRNA stability in zebrafish , 2010, The EMBO journal.

[51]  Selene L. Fernandez-Valverde,et al.  Dynamic isomiR regulation in Drosophila development. , 2010, RNA.

[52]  Y. Hayashizaki,et al.  A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness. , 2010, Genome research.

[53]  Zhiping Weng,et al.  Target RNA–Directed Trimming and Tailing of Small Silencing RNAs , 2010, Science.

[54]  Pamela J Green,et al.  Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas , 2010, Proceedings of the National Academy of Sciences.

[55]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[56]  Pedro J. Batista,et al.  CDE-1 Affects Chromosome Segregation through Uridylation of CSR-1-Bound siRNAs , 2009, Cell.

[57]  Sean R Eddy,et al.  A new generation of homology search tools based on probabilistic inference. , 2009, Genome informatics. International Conference on Genome Informatics.

[58]  C. Joo,et al.  TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation , 2009, Cell.

[59]  J. Neilson,et al.  Zcchc11-dependent uridylation of microRNA directs cytokine expression , 2009, Nature Cell Biology.

[60]  Henriette M. Kurth,et al.  2'-O-methylation stabilizes Piwi-associated small RNAs and ensures DNA elimination in Tetrahymena. , 2009, RNA.

[61]  E. Wagner,et al.  Knockdown of SLBP results in nuclear retention of histone mRNA. , 2009, RNA.

[62]  O. Voinnet Origin, Biogenesis, and Activity of Plant MicroRNAs , 2009, Cell.

[63]  T. Katoh,et al.  Selective stabilization of mammalian microRNAs by 3' adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. , 2009, Genes & development.

[64]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[65]  C. Joo,et al.  Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. , 2008, Molecular cell.

[66]  R. Lührmann,et al.  3'-cyclic phosphorylation of U6 snRNA leads to recruitment of recycling factor p110 through LSm proteins. , 2008, RNA.

[67]  M. Wickens,et al.  A Tail Tale for U , 2008, Science.

[68]  T. Mullen,et al.  Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5' to 3' and 3' to 5'. , 2008, Genes & development.

[69]  M. Kiledjian,et al.  3' Terminal oligo U-tract-mediated stimulation of decapping. , 2007, RNA.

[70]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[71]  S. Pfeffer,et al.  Mouse Cytomegalovirus MicroRNAs Dominate the Cellular Small RNA Profile during Lytic Infection and Show Features of Posttranscriptional Regulation , 2007, Journal of Virology.

[72]  Zissimos Mourelatos,et al.  The mouse homolog of HEN1 is a potential methylase for Piwi-interacting RNAs. , 2007, RNA.

[73]  Peng Wang,et al.  The Drosophila RNA Methyltransferase, DmHen1, Modifies Germline piRNAs and Single-Stranded siRNAs in RISC , 2007, Current Biology.

[74]  Kuniaki Saito,et al.  Pimet, the Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi- interacting RNAs at their 3' ends. , 2007, Genes & development.

[75]  C. Norbury,et al.  Efficient RNA Polyuridylation by Noncanonical Poly(A) Polymerases , 2007, Molecular and Cellular Biology.

[76]  Jennifer Hesson,et al.  Untemplated Oligoadenylation Promotes Degradation of RISC-Cleaved Transcripts , 2006, Science.

[77]  H. Urlaub,et al.  Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase. , 2006, RNA.

[78]  D. Bartel,et al.  MicroRNAS and their regulatory roles in plants. , 2006, Annual review of plant biology.

[79]  N. Proudfoot,et al.  Adenylation and exosome-mediated degradation of cotranscriptionally cleaved pre-messenger RNA in human cells. , 2006, Molecular cell.

[80]  Xuemei Chen,et al.  HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide , 2006, Nucleic acids research.

[81]  J. Butler,et al.  Rat1p and Rai1p function with the nuclear exosome in the processing and degradation of rRNA precursors. , 2005, RNA.

[82]  Xuemei Chen,et al.  Methylation Protects miRNAs and siRNAs from a 3′-End Uridylation Activity in Arabidopsis , 2005, Current Biology.

[83]  Xuemei Chen,et al.  Methylation as a Crucial Step in Plant microRNA Biogenesis , 2005, Science.

[84]  J. Butler,et al.  5-Fluorouracil Enhances Exosome-Dependent Accumulation of Polyadenylated rRNAs , 2004, Molecular and Cellular Biology.

[85]  H. Goodman,et al.  Uridine Addition After MicroRNA-Directed Cleavage , 2004, Science.

[86]  P. Green,et al.  AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. , 2004, Molecular cell.

[87]  Letian Kuai,et al.  Polyadenylation of rRNA in Saccharomyces cerevisiae. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Anton J. Enright,et al.  Identification of Virus-Encoded MicroRNAs , 2004, Science.

[89]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[90]  H. Richly,et al.  Biochemical characterization of a U6 small nuclear RNA-specific terminal uridylyltransferase. , 2003, European journal of biochemistry.

[91]  C. Borchers,et al.  Phosphorylation of Stem-Loop Binding Protein (SLBP) on Two Threonines Triggers Degradation of SLBP, the Sole Cell Cycle-Regulated Factor Required for Regulation of Histone mRNA Processing, at the End of S Phase , 2003, Molecular and Cellular Biology.

[92]  W. Marzluff,et al.  The Histone 3′-Terminal Stem-Loop-Binding Protein Enhances Translation through a Functional and Physical Interaction with Eukaryotic Initiation Factor 4G (eIF4G) and eIF3 , 2002, Molecular and Cellular Biology.

[93]  W. Marzluff,et al.  The Stem-Loop Binding Protein Is Required for Efficient Translation of Histone mRNA In Vivo and In Vitro , 2002, Molecular and Cellular Biology.

[94]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[95]  M. Whitfield,et al.  The protein that binds the 3' end of histone mRNA: a novel RNA-binding protein required for histone pre-mRNA processing. , 1996, Genes & development.

[96]  J. Manley Messenger RNA polyadenylylation: a universal modification. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[97]  J. Tazi,et al.  Mammalian U6 small nuclear RNA undergoes 3' end modifications within the spliceosome , 1993, Molecular and cellular biology.

[98]  E. Lund,et al.  Cyclic 2',3'-phosphates and nontemplated nucleotides at the 3' end of spliceosomal U6 small nuclear RNA's. , 1992, Science.

[99]  F. Cramer,et al.  The -C-C-A end of tRNA and its role in protein biosynthesis. , 1985, Progress in nucleic acid research and molecular biology.

[100]  T. Austin Precursors. , 2020, Bulletin of the World Health Organization.