Self-Adaptive Gravitational Search Algorithm With a Modified Chaotic Local Search

The gravitational search algorithm (GSA) has been proved to yield good performance in solving various optimization problems. However, it is inevitable to suffer from slow exploitation when solving complex problems. In this paper, a thorough empirical analysis of the GSA is performed, which elaborates the role of the gravitational parameter <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> in the optimization process of the GSA. The convergence speed and solution quality are found to be highly sensitive to the value of <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula>. A self-adaptive mechanism is proposed to adjust the value of <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> automatically, aiming to maintain the balance of exploration and exploitation. To further improve the convergence speed of GSA, we also modify the classic chaotic local search and insert it into the optimization process of the GSA. Through these two techniques, the main weakness of GSA has been overcome effectively, and the obtained results of 23 benchmark functions confirm the excellent performance of the proposed method.

[1]  Siti Zaiton Mohd Hashim,et al.  Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm , 2012, Appl. Math. Comput..

[2]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[3]  Kevin Hapeshi,et al.  A Review of Nature-Inspired Algorithms , 2010 .

[4]  MengChu Zhou,et al.  Routing in Internet of Vehicles: A Review , 2015, IEEE Transactions on Intelligent Transportation Systems.

[5]  Yiqiao Cai,et al.  Differential Evolution Enhanced With Multiobjective Sorting-Based Mutation Operators , 2014, IEEE Transactions on Cybernetics.

[6]  Xin-She Yang,et al.  Flower Pollination Algorithm for Global Optimization , 2012, UCNC.

[7]  Amir Hossein Gandomi,et al.  Chaotic gravitational constants for the gravitational search algorithm , 2017, Appl. Soft Comput..

[8]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[9]  Filipp Seljanko,et al.  Hexapod walking robot gait generation using genetic-gravitational hybrid algorithm , 2011, 2011 15th International Conference on Advanced Robotics (ICAR).

[10]  Marjan Mernik,et al.  Exploration and exploitation in evolutionary algorithms: A survey , 2013, CSUR.

[11]  Yalan Zhou,et al.  Ensemble of many-objective evolutionary algorithms for many-objective problems , 2015, Soft Computing.

[12]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[13]  Julie Z. Zhang,et al.  Surface roughness optimization in an end-milling operation using the Taguchi design method , 2007 .

[14]  Wei Wang,et al.  Improved Clonal Selection Algorithm Combined with Ant Colony Optimization , 2008, IEICE Trans. Inf. Syst..

[15]  Hossein Nezamabadi-pour,et al.  A prototype classifier based on gravitational search algorithm , 2012, Appl. Soft Comput..

[16]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[17]  Hsing-Chih Tsai,et al.  Gravitational particle swarm , 2013, Appl. Math. Comput..

[18]  Erik Valdemar Cuevas Jiménez,et al.  A novel evolutionary algorithm inspired by the states of matter for template matching , 2013, Expert Syst. Appl..

[19]  Miguel A. Vega-Rodríguez,et al.  Applying a Multiobjective Gravitational Search Algorithm (MO-GSA) to Discover Motifs , 2011, IWANN.

[20]  D. Palanikkumar,et al.  A Gravitational Search Algorithm for effective Web Service Selection for Composition with enhanced QoS in SOA , 2012 .

[21]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[22]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[23]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[24]  Marte A. Ramírez-Ortegón,et al.  An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation , 2013, Applied Intelligence.

[25]  Sakti Prasad Ghoshal,et al.  A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems , 2012 .

[26]  Ken G. Smith,et al.  The interplay between exploration and exploitation. , 2006 .

[27]  Jiujun Cheng,et al.  Ant colony optimization with clustering for solving the dynamic location routing problem , 2016, Appl. Math. Comput..

[28]  Andrew Lewis,et al.  Adaptive gbest-guided gravitational search algorithm , 2014, Neural Computing and Applications.

[29]  Zheng Tang,et al.  A Multi-Learning Immune Algorithm for Numerical Optimization , 2015, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[30]  Hossein Nezamabadi-pour,et al.  A gravitational search algorithm for multimodal optimization , 2014, Swarm Evol. Comput..

[31]  Yiqiao Cai,et al.  Differential Evolution With Neighborhood and Direction Information for Numerical Optimization , 2013, IEEE Transactions on Cybernetics.

[32]  Imtiaz Ahmed Choudhury,et al.  Application of Taguchi method in the optimization of end milling parameters , 2004 .

[33]  D. M. Vinod Kumar,et al.  Strategic bidding using fuzzy adaptive gravitational search algorithm in a pool based electricity market , 2013, Appl. Soft Comput..

[34]  Jianzhong Zhou,et al.  Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm , 2011 .

[35]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[36]  Tao Gong,et al.  Graph planarization problem optimization based on triple-valued gravitational search algorithm , 2014 .

[37]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[38]  Xiangtao Li,et al.  A novel hybrid K-harmonic means and gravitational search algorithm approach for clustering , 2011, Expert Syst. Appl..

[39]  Jiujun Cheng,et al.  Incorporation of Solvent Effect into Multi-Objective Evolutionary Algorithm for Improved Protein Structure Prediction , 2018, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[40]  Zheng Tang,et al.  An Expanded Lateral Interactive Clonal Selection Algorithm and Its Application , 2008, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[41]  Lalit M. Patnaik,et al.  Adaptive probabilities of crossover and mutation in genetic algorithms , 1994, IEEE Trans. Syst. Man Cybern..

[42]  Tao Jiang,et al.  Improved chaotic gravitational search algorithms for global optimization , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[43]  Ahmed El-Shafie,et al.  A modified gravitational search algorithm for slope stability analysis , 2012, Eng. Appl. Artif. Intell..

[44]  Hossein Nezamabadi-pour,et al.  Disruption: A new operator in gravitational search algorithm , 2011, Sci. Iran..

[45]  Hui Qin,et al.  Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling , 2009 .

[46]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[47]  Han Xiao,et al.  Parameters identification of chaotic system by chaotic gravitational search algorithm , 2012, Chaos, Solitons &amp; Fractals.

[48]  S. S. Thakur,et al.  Optimal static state estimation using improved particle swarm optimization and gravitational search algorithm , 2013 .

[49]  Taisir Eldos,et al.  An Efficient cell Placement using gravitational Search Algorithms , 2013, J. Comput. Sci..