Probing mechanical properties of graphene with Raman spectroscopy

The use of Raman scattering techniques to study the mechanical properties of graphene films is reviewed here. The determination of Grüneisen parameters of suspended graphene sheets under uni- and bi-axial strain is discussed, and the values are compared to theoretical predictions. The effects of the graphene−substrate interaction on strain and to the temperature evolution of the graphene Raman spectra are discussed. Finally, the relation between mechanical and thermal properties is presented along with the characterization of thermal properties of graphene with Raman spectroscopy.

[1]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[2]  R. Nair,et al.  Thermal conductivity of graphene in corbino membrane geometry. , 2010, ACS nano.

[3]  Alexander A. Balandin,et al.  Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering , 2009 .

[4]  Chongwu Zhou,et al.  Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. , 2005, Journal of the American Chemical Society.

[5]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[6]  C. N. Lau,et al.  Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices , 2007 .

[7]  C. N. Lau,et al.  Evidence for strain-induced local conductance modulations in single-layer graphene on SiO2. , 2009, Nano letters.

[8]  R. Young,et al.  Variations in the Raman peak shift as a function of hydrostatic pressure for various carbon nanostructures: a simple geometric effect , 2003 .

[9]  Mengkun Liu,et al.  Biaxial Strain in Graphene Adhered to Shallow Depressions Figure 1. (a) Schematics of Confocal Raman Scanning Setup and (b) Cross Section through the Sample. a Single Layer Graphene Sheet Covers a Shallow Square Depression in the Sio 2 /si Substrate , 2022 .

[10]  A. Reina,et al.  Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. , 2009, Nano letters.

[11]  H. B. Weber,et al.  Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. , 2009, Nature materials.

[12]  X. F. Fan,et al.  Raman spectroscopy of epitaxial graphene on a SiC substrate , 2008 .

[13]  J. Maultzsch,et al.  Two-dimensional electronic and vibrational band structure of uniaxially strained graphene from ab initio calculations , 2009 .

[14]  A. Jorio,et al.  Influence of the atomic structure on the Raman spectra of graphite edges. , 2004, Physical review letters.

[15]  T. Michely,et al.  Structure of epitaxial graphene on Ir(111) , 2008 .

[16]  Graphene-on-Sapphire and Graphene-on-Glass: Raman Spectroscopy Study , 2007, 0710.2369.

[17]  Alexander A. Balandin,et al.  Thermal conductivity of diamond-like carbon films , 2006 .

[18]  Alexander A. Balandin,et al.  Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well , 1998 .

[19]  Ralf Graupner,et al.  Raman spectra of epitaxial graphene on SiC(0001) , 2008 .

[20]  Lothar Meyer,et al.  Lattice Constants of Graphite at Low Temperatures , 1955 .

[21]  K. Novoselov,et al.  Raman Fingerprint of Charged Impurities in Graphene , 2007, 0709.2566.

[22]  F. Guinea,et al.  Periodically rippled graphene: growth and spatially resolved electronic structure. , 2007, Physical review letters.

[23]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[24]  M. I. Katsnelson,et al.  Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering , 2010 .

[25]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Y. Son,et al.  Effects of strain on electronic properties of graphene , 2009, 0908.0977.

[27]  Francesco Mauri,et al.  Kohn anomalies and electron-phonon interactions in graphite. , 2004, Physical review letters.

[28]  Xiaojun Weng,et al.  Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale. , 2009, Nano letters.

[29]  Nicola Marzari,et al.  Phonon anharmonicities in graphite and graphene. , 2007, Physical review letters.

[30]  Taisuke Ohta,et al.  Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. , 2006, Physical review letters.

[31]  Joshua A Robinson,et al.  Raman topography and strain uniformity of large-area epitaxial graphene. , 2009, Nano letters.

[32]  G. Grimvall Thermophysical properties of materials , 1986 .

[33]  Nicola Marzari,et al.  First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives , 2004, cond-mat/0412643.

[34]  C. K. Maiti EditorialSpecial issue on strained-si heterostructures and devices , 2004 .

[35]  J. Nilsson,et al.  Probing the electronic structure of bilayer graphene by Raman scattering , 2007, 0708.1345.

[36]  W. D. de Heer,et al.  The growth and morphology of epitaxial multilayer graphene , 2008 .

[37]  C. Hierold,et al.  Spatially resolved Raman spectroscopy of single- and few-layer graphene. , 2006, Nano letters.

[38]  Grimsditch,et al.  Raman scattering in diamond up to 1900 K. , 1991, Physical review. B, Condensed matter.

[39]  D. Kurt Gaskill,et al.  Comparison of epitaxial graphene on Si-face and C-face 4H SiC formed by ultrahigh vacuum and RF furnace production. , 2009, Nano letters.

[40]  Thomsen,et al.  Double resonant raman scattering in graphite , 2000, Physical review letters.

[41]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[42]  A. A. Balandin,et al.  Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite , 2009, 0904.0607.

[43]  J. Ferraro,et al.  Pressure Dependence of Infrared Eigenfrequencies of KCl and KBr , 1968 .

[44]  Samia Subrina,et al.  Dimensional crossover of thermal transport in few-layer graphene. , 2010, Nature materials.

[45]  Ying Ying Wang,et al.  Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. , 2008, ACS nano.

[46]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[47]  M. Dresselhaus,et al.  Studying disorder in graphite-based systems by Raman spectroscopy. , 2007, Physical chemistry chemical physics : PCCP.

[48]  H. R. Krishnamurthy,et al.  Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. , 2008, Nature nanotechnology.

[49]  A. H. Castro Neto,et al.  Strain engineering of graphene's electronic structure. , 2009, Physical review letters.

[50]  R. Nemanich,et al.  First- and second-order Raman scattering from finite-size crystals of graphite , 1979 .

[51]  K. Novoselov,et al.  Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane , 2008, Science.

[52]  Mikael Syväjärvi,et al.  Homogeneous large-area graphene layer growth on 6H-SiC(0001) , 2008 .

[53]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[54]  Alexander A. Balandin,et al.  Thermal conductivity of nitrogenated ultrananocrystalline diamond films on silicon , 2008 .

[55]  A. Ferrari,et al.  Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .

[56]  Alexander A. Balandin,et al.  Phonon heat conduction in a semiconductor nanowire , 2001 .

[57]  Ting Yu,et al.  Edge chirality determination of graphene by Raman spectroscopy , 2008 .

[58]  T. Michely,et al.  Structural coherency of graphene on Ir(111). , 2008, Nano letters.

[59]  S. Stankovich,et al.  Preparation and characterization of graphene oxide paper , 2007, Nature.

[60]  Hugen Yan,et al.  Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy , 2009, Proceedings of the National Academy of Sciences.

[61]  M. Dresselhaus,et al.  Raman spectroscopy in graphene , 2009 .

[62]  S. Marchini,et al.  Scanning tunneling microscopy of graphene on Ru(0001) , 2007 .

[63]  R. Maboudian,et al.  Evolution in Surface Morphology of Epitaxial Graphene Layers on SiC Induced by Controlled Structural Strain , 2008, 0810.5171.

[64]  Linda S. Schadler,et al.  Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes , 2002 .

[65]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[66]  N. Marzari,et al.  Uniaxial Strain in Graphene by Raman Spectroscopy: G peak splitting, Gruneisen Parameters and Sample Orientation , 2008, 0812.1538.

[67]  Masahiro Sasaki,et al.  Highly oriented monolayer graphite formation on Pt(111) by a supersonic methane beam , 2004 .

[68]  BRIEF COMMUNICATION: Control of strain gradient in doped polycrystalline silicon carbide films through tailored doping , 2006 .

[69]  J. Flege,et al.  Epitaxial graphene on ruthenium. , 2008, Nature materials.

[70]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[71]  John Robertson,et al.  Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon , 2001 .

[72]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[73]  Zhenhua Ni,et al.  Raman Mapping Investigation of Graphene on Transparent Flexible Substrate: The Strain Effect , 2008 .

[74]  Zou Guang-tian,et al.  High-pressure Raman studies of graphite and ferric chloride-graphite , 1990 .

[75]  Paul L. McEuen,et al.  Mechanical properties of suspended graphene sheets , 2007 .

[76]  Li Shi,et al.  Two-Dimensional Phonon Transport in Supported Graphene , 2010, Science.

[77]  J. Maultzsch,et al.  Phonon Dispersion in Graphite , 2004 .

[78]  A Gupta,et al.  Raman scattering from high-frequency phonons in supported n-graphene layer films. , 2006, Nano letters.

[79]  C. N. Lau,et al.  Temperature dependence of the Raman spectra of graphene and graphene multilayers. , 2007, Nano letters.

[80]  Ado Jorio,et al.  General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy , 2006 .

[81]  D. Batchelder,et al.  Strain dependences of the first- and second-order Raman spectra of carbon fibres , 1988 .

[82]  K. Novoselov,et al.  Raman spectroscopy of graphene edges. , 2008, Nano letters.

[83]  P. Tan,et al.  The intrinsic temperature effect of the Raman spectra of graphite , 1999 .

[84]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[85]  Syassen,et al.  Graphite under pressure: Equation of state and first-order Raman modes. , 1989, Physical review. B, Condensed matter.

[86]  L. Ley,et al.  Origin of the D peak in the Raman spectrum of microcrystalline graphite , 1998 .

[87]  P. Puech,et al.  Controlled laser heating of carbon nanotubes , 2006 .

[88]  Martins,et al.  Energetics of interplanar binding in graphite. , 1992, Physical review. B, Condensed matter.

[89]  K. Novoselov,et al.  Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. , 2007, Nature materials.

[90]  G. A. Slack,et al.  Thermal expansion of some diamondlike crystals , 1975 .

[91]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[92]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[93]  J.-M. Themlin,et al.  HETEROEPITAXIAL GRAPHITE ON 6H-SIC(0001): INTERFACE FORMATION THROUGH CONDUCTION-BAND ELECTRONIC STRUCTURE , 1998 .

[94]  R. R. Haering,et al.  BAND STRUCTURE OF RHOMBOHEDRAL GRAPHITE , 1958 .

[95]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[96]  Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects , 2006, cond-mat/0611693.

[97]  R. Ruoff,et al.  Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. , 2010, Nano letters.

[98]  A. K. Ramdas,et al.  Raman Spectrum of Diamond , 1970 .

[99]  Z. Shen,et al.  Tunable stress and controlled thickness modification in graphene by annealing. , 2008, ACS nano.

[100]  C. N. Lau,et al.  Raman spectroscopy of ripple formation in suspended graphene. , 2009, Nano letters.

[101]  Roya Maboudian,et al.  Evidence of structural strain in epitaxial graphene layers on 6H-SiC(0001). , 2008, Physical review letters.