Error Detection for Statistical Machine Translation Using Linguistic Features

Automatic error detection is desired in the post-processing to improve machine translation quality. The previous work is largely based on confidence estimation using system-based features, such as word posterior probabilities calculated from N-best lists or word lattices. We propose to incorporate two groups of linguistic features, which convey information from outside machine translation systems, into error detection: lexical and syntactic features. We use a maximum entropy classifier to predict translation errors by integrating word posterior probability feature and linguistic features. The experimental results show that 1) linguistic features alone outperform word posterior probability based confidence estimation in error detection; and 2) linguistic features can further provide complementary information when combined with word confidence scores, which collectively reduce the classification error rate by 18.52% and improve the F measure by 16.37%.

[1]  Alon Lavie,et al.  Multi-engine machine translation guided by explicit word matching , 2005, EAMT.

[2]  Hermann Ney,et al.  N-Gram Posterior Probabilities for Statistical Machine Translation , 2006, WMT@HLT-NAACL.

[3]  E. Vidal,et al.  Estimation of confidence measures for machine translation , 2007, MTSUMMIT.

[4]  Franz Josef Och,et al.  Minimum Error Rate Training in Statistical Machine Translation , 2003, ACL.

[5]  Alex Kulesza,et al.  Confidence Estimation for Machine Translation , 2004, COLING.

[6]  George F. Foster,et al.  Confidence estimation for translation prediction , 2003, CoNLL.

[7]  Hermann Ney,et al.  Confidence measures for statistical machine translation , 2003, MTSUMMIT.

[8]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[9]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[10]  Zhang Le,et al.  Maximum Entropy Modeling Toolkit for Python and C , 2004 .

[11]  Daniel Dominic Sleator,et al.  Parsing English with a Link Grammar , 1995, IWPT.

[12]  Debra Elliott,et al.  Corpus-based machine translation evaluation via automated error detection in output texts , 2006 .

[13]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[14]  Kamel Smaïli,et al.  Word- and Sentence-Level Confidence Measures for Machine Translation , 2009, EAMT.

[15]  Adam L. Berger,et al.  A Maximum Entropy Approach to Natural Language Processing , 1996, CL.

[16]  Eiichiro Sumita,et al.  Using a Mixture of N-Best Lists from Multiple MT Systems in Rank-Sum-Based Confidence Measure for MT Outputs , 2004, COLING.

[17]  Daniel Marcu,et al.  Statistical Phrase-Based Translation , 2003, NAACL.

[18]  Andreas Stolcke,et al.  SRILM - an extensible language modeling toolkit , 2002, INTERSPEECH.

[19]  Hermann Ney,et al.  Word-Level Confidence Estimation for Machine Translation , 2007, CL.

[20]  Lina Zhou,et al.  Error Detection Using Linguistic Features , 2005, HLT/EMNLP.