A weighted nonlinear regression-based inverse model for interpretation of pipeline survey data

An inverse model, useful for interpreting pipeline survey data in terms of the physical condition of pipe coating, was developed by coupling a boundary-element forward model with a nonlinear regression algorithm. The forward model accounted for the passage of current through a three-dimensional homogeneous medium and yielded soil surface potentials for given pipe/anode configurations and pipe coating properties. The number of regressed parameters was reduced by using a function for coating resistivity that allowed specification of coating defects. A weighted simulated-annealing nonlinear regression algorithm facilitated analysis of noisy data. A method was developed to determine the appropriate number of fitted parameters. The procedure is demonstrated by simulation of a coated underground pipe segment protected by a sacrificial anode.

[1]  A W Peabody,et al.  Control of Pipeline Corrosion , 1978 .

[2]  Johan Deconinck,et al.  Modeling of underground cathodic protection stray currents , 1996 .

[3]  B. M. Fulk MATH , 1992 .

[4]  L. Wrobel,et al.  A BEM‐based genetic algorithm for identification of polarization curves in cathodic protection systems , 2002 .

[5]  Tiee-Jian Wu,et al.  The weighted average information criterion for order selection in time series and regression models , 1998 .

[6]  Jouko Lampinen,et al.  Bayesian MLP neural networks for image analysis , 2000, Pattern Recognit. Lett..

[7]  R. M. Degerstedt,et al.  Mathematical Models for Cathodic Protection of an Underground Pipeline with Coating Holidays: Part 1 — Theoretical Development , 1995 .

[8]  Luiz C. Wrobel,et al.  NUMERICAL SIMULATION OF A CATHODICALLY PROTECTED SEMISUBMERSIBLE PLATFORM USING THE PROCAT SYSTEM , 1990 .

[9]  Steven L. Ceccio,et al.  A review of electrical impedance techniques for the measurement of multiphase flows , 1991 .

[10]  R. M. Degerstedt,et al.  Computer modeling aids traditional cathodic protection design methods for coated pipelines , 1996 .

[11]  Mark E. Orazem,et al.  Measurement Models for Electrochemical Impedance Spectroscopy I . Demonstration of Applicability , 1992 .

[12]  F. Yoshikawa,et al.  Boundary Elements in Axisymmetric Potential Problems , 1982 .

[13]  Carlos Alberto Brebbia,et al.  Boundary Elements: An Introductory Course , 1989 .

[14]  A New Equation for Potential Attenuation and Anode Current Output Projection for Cathodically Polarized Marine Pipelines and Risers , 2000 .

[15]  R. M. Degerstedt,et al.  Mathematical Models for Cathodic Protection of an Underground Pipeline with Coating Holidays: Part 2 Case Studies of Parallel Anode Cathodic Protection Systems underground pipelines by parallel-ribbon anodes. , 1997 .

[16]  R Wytch,et al.  Electrical impedance tomography: a review of current literature. , 1994, European journal of radiology.

[17]  H. F. Morrison,et al.  Crosswell electromagnetic tomography: System design considerations and field results , 1995 .

[18]  S. Aoki,et al.  Prediction of galvanic corrosion rates by the boundary element method , 1991 .

[19]  M. O. Durham,et al.  Cathodic Protection , 1991 .

[20]  Liliana Borcea,et al.  Electrical impedance tomography , 2002 .

[21]  Shigeru Aoki,et al.  Multistep Genetic Algorithm for Detecting Corrosion of Reinforcing Steels in Concrete , 2001 .

[22]  M. B. Dusseault,et al.  Inversion techniques applied to resistivity inverse problems , 1994 .

[23]  Shigeru Aoki,et al.  Optimization of cathodic protection system by BEM , 1997 .

[24]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[25]  Richard A Williams,et al.  Status and applications of microelectrical resistance tomography , 2000 .

[26]  Mark E. Orazem,et al.  Application of Boundary Element Models to Predict Effectiveness of Coupons for Accessing Cathodic Protection of Buried Structures , 2000 .

[27]  Antonello Tamburrino,et al.  A new non-iterative inversion method for electrical resistance tomography , 2002 .

[28]  Yasuhiro Fujimitsu,et al.  Case studies of electrical and electromagnetic methods applied to mapping active faults beneath the , 2000 .

[29]  C. Brebbia,et al.  Boundary Element Techniques , 1984 .

[30]  P. Doig,et al.  A Finite Difference Numerical Analysis of Galvanic Corrosion for Semi‐Infinite Linear Coplanar Electrodes , 1979 .

[31]  Adnan M. Awad,et al.  Properties of the Akaike information criterion , 1996 .

[32]  Xiaodong Jia,et al.  Tomographic imaging of particulate systems , 2003 .

[33]  G. Kitagawa,et al.  Akaike Information Criterion Statistics , 1988 .

[34]  Trevor A. York Status of electrical tomography in industrial applications , 2001, J. Electronic Imaging.

[35]  Elimination of Error from Nonuniform Current Distribution in Polarization Measurement by Boundary Element Inverse Analysis , 1998 .

[36]  Anthony J. Peyton,et al.  Chemical engineering applications of electrical process tomography , 2003 .

[37]  William H. Press,et al.  Numerical recipes in C , 2002 .

[38]  Johan Deconinck,et al.  A Numerical Model for Cathodic Protection of Buried Pipes , 1994 .

[39]  J. T. Waber,et al.  Mathematical Studies on Galvanic Corrosion IV . Influence of Electrolyte Thickness on the Potential and Current Distributions over Coplanar Electrodes Using Polarization Parameters , 1956 .

[40]  William L. Goffe,et al.  SIMANN: FORTRAN module to perform Global Optimization of Statistical Functions with Simulated Annealing , 1992 .

[41]  L. García-Rubio,et al.  Application of Measurement Models to Impedance Spectroscopy II . Determination of the Stochastic Contribution to the Error Structure , 1995 .

[42]  K. J. Kennelley,et al.  Current and Potential Distribution on a Coated Pipeline with Holidays Part II—Comparison of the Effects of Discrete and Distributed Holidays , 1993 .

[43]  S. Aoki,et al.  Analysis of Potential and Current Density Distributions Using a Boundary Element Method , 1988 .

[44]  A. Witten,et al.  Impedance tomography: imaging algorithms for geophysical applications , 1994 .

[45]  Denys Breysse,et al.  Electrical resistivity borehole measurements: application to an urban tunnel site , 2002 .

[46]  K. J. Kennelley,et al.  Current and Potential Distribution on a Coated Pipeline with Holidays Part I—Model and Experimental Verification , 1993 .

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[48]  Zhenyu Guo,et al.  A review of electrical impedance techniques for breast cancer detection. , 2003, Medical engineering & physics.

[49]  Brian H. Brown,et al.  Medical impedance tomography and process impedance tomography: a brief review , 2001 .

[50]  William H. Press,et al.  Numerical recipes , 1990 .

[51]  L. Wrobel,et al.  Genetic algorithms for inverse cathodic protection problems , 2004 .

[52]  Robin Yassin-Kassab Petrol , 2012, Postgraduate medical journal.

[53]  Mark E. Orazem,et al.  Assessment of Pipeline Condition Using Heterogeneous Input Data , 2004 .

[54]  G. Kitagawa,et al.  Akaike Information Criterion Statistics , 1988 .