Vertical structure of vegetated land surfaces from interferometric and polarimetric radar

This paper describes the estimation of parameters characterizing the vertical structure of vegetated land surfaces, from combined interferometric and polarimetric radar data. Physical models expressing radar observations in terms of parameters describing vegetated land surfaces are the foundation for parameter estimation techniques. Defining a general complex cross correlation enables the unified development of models for interferometry and polarimetry, including polarimetric interferometry. Three simple physical models in this paper express this complex cross correlation in terms of vegetation parameters: (1) a randomly oriented volume, (2) a randomly oriented volume with a ground return, and (3) an oriented volume. For the first two models the parameters include vegetation height, extinction coefficient, underlying topography, and another parameter depending on ground electrical properties and roughness. For the oriented volume, additional parameters depend on the refractivity, extinction coefficients, and backscattering characteristics of waves propagating along eigenpolarizations of the vegetation volume. The above models show that the interferometric cross‐correlation amplitude and the polarimetric {HHHH/VVVV} ratio both change by about 1% per meter of vegetation height change, for experimental conditions typical of airborne and spaceborne interferometric radars. These vertical‐structure sensitivities prompt a parameter estimation demonstration with two‐baseline TOPSAR interferometric and zero‐baseline polarimetric data from the Boreal Ecosystem‐Atmosphere Study (BOREAS) Southern Study Area in Prince Albert National Park, Saskatchewan, Canada. The demonstrations show the feasibility of measuring vegetation height to better than 4.2 m, underlying topography to better than 6.5 m, and the ratio of ground‐to‐volume power to better than 10%, using interferometry and polarimetry, coupled with parameter‐constraining assumptions, concerning the degree of surface roughness. This paper suggests that single‐baseline and multibaseline fully polarimetric interferometry have the potential to obviate the need for such assumptions, thereby making parameter estimation more robust, accurate, and realistic.

[1]  P. Waterman,et al.  MULTIPLE SCATTERING OF WAVES , 1961 .

[2]  P. Beckmann,et al.  The scattering of electromagnetic waves from rough surfaces , 1963 .

[3]  A. Schneider Statistics in Physical Science: Estimation, Hypothesis Testing, and Least Squares , 1966 .

[4]  G. Valenzuela,et al.  Depolarization of EM waves by slightly rough surfaces , 1967 .

[5]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[6]  C. Swift,et al.  Microwave remote sensing , 1980, IEEE Antennas and Propagation Society Newsletter.

[7]  Roger H. Lang,et al.  Electromagnetic backscattering from a sparse distribution of lossy dielectric scatterers , 1981 .

[8]  W. A. Gambling,et al.  General Assembly of the International Union of Radio Science , 1982 .

[9]  Richard K. Moore,et al.  Microwave Remote Sensing, Active and Passive , 1982 .

[10]  J. Kong,et al.  Theory of microwave remote sensing , 1985 .

[11]  J. Vesecky,et al.  Wave propagation and scattering. , 1989 .

[12]  Stephen L. Durden,et al.  Modeling and observation of the radar polarization signature of forested areas , 1989 .

[13]  J. Smith Remote Sensing of the Biosphere , 1990 .

[14]  Harold A. Mooney,et al.  Remote Sensing of Biosphere Functioning , 1990 .

[15]  T. Spies,et al.  Ecological definitions of Old-Growth Douglas-fir forests , 1991 .

[16]  Fuk K. Li,et al.  Symmetry properties in polarimetric remote sensing , 1992 .

[17]  Giovanni Alberti,et al.  The TOPSAR interferometric radar topographic mapping instrument , 1992, IEEE Trans. Geosci. Remote. Sens..

[18]  Lars M. H. Ulander,et al.  Repeat-pass SAR interferometry over forested terrain , 1995 .

[19]  R. Neilson A Model for Predicting Continental‐Scale Vegetation Distribution and Water Balance , 1995 .

[20]  Mahta Moghaddam,et al.  Analysis of scattering mechanisms in SAR imagery over boreal forest: results from BOREAS '93 , 1995, IEEE Trans. Geosci. Remote. Sens..

[21]  K. Jon Ranson,et al.  Imaging radar for ecosystem studies , 1995 .

[22]  Lars M. H. Ulander,et al.  Repeat-pass SAR interferometry over forested terrain , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[24]  M. Moghaddam,et al.  Vegetation characteristics and underlying topography from interferometric radar , 1996 .

[25]  Mahta Moghaddam,et al.  Forest vertical structure from multibaseline interferometric radar for studying growth and productivity , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[26]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[27]  Urs Wegmüller,et al.  Retrieval of vegetation parameters with SAR interferometry , 1997, IEEE Trans. Geosci. Remote. Sens..

[28]  Kamal Sarabandi Δk-radar equivalent of interferometric SAR's: a theoretical study for determination of vegetation height , 1997, IEEE Trans. Geosci. Remote. Sens..

[29]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[30]  Vegetation Structure from Polarimetric Interferometry , 1998 .

[31]  J. S. Lee,et al.  Topographic mapping using polarimetric SAR data , 1998 .

[32]  Gregory P. Asner,et al.  Heterogeneity of savanna canopy structure and function from imaging spectrometry and inverse modeling , 1998 .

[33]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[34]  Richard K. Moore,et al.  Microwave Remote Sensing , 1999 .

[35]  J. Means Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon , 1999 .

[36]  Kamal Sarabandi,et al.  Retrieval of forest parameters using a fractal-based coherent scattering model and a genetic algorithm , 1999, IEEE Trans. Geosci. Remote. Sens..

[37]  Shane Cloude,et al.  The structure of oriented vegetation from polarimetric interferometry , 1999, IEEE Trans. Geosci. Remote. Sens..

[38]  佐藤 晃一,et al.  Polarimetric SAR Interferometryによる森林の特徴について , 2000 .

[39]  M. Moghaddam Effect of Medium Symmetries On Parameter Estimation With Polarimetric Interferometry , 2000 .