Hardy's Theorem and the Short‐Time Fourier Transform of Schwartz Functions

The Schwartz space of rapidly decaying test functions is characterized by the decay of the short‐time Fourier transform or cross‐Wigner distribution. Then a version of Hardy's theorem is proved for the short‐time Fourier transform and for the Wigner distribution.

[1]  G. Hardy A Theorem Concerning Fourier Transforms , 1933 .

[2]  G. Björck Linear partial differential operators and generalized distributions , 1966 .

[3]  R. Howe Quantum mechanics and partial differential equations , 1980 .

[4]  A. Janssen Gabor representation of generalized functions , 1981 .

[5]  H. Triebel Theory Of Function Spaces , 1983 .

[6]  A. Janssen Positivity properties of phase-plane distribution functions , 1984 .

[7]  L. Corwin Matrix coefficients of nilpotent lie groups , 1984 .

[8]  W. Schempp Radar ambiguity functions, the Heisenberg group, and holomorphic theta series , 1984 .

[9]  M. Cowling,et al.  Bandwidth Versus Time Concentration: The Heisenberg–Pauli–Weyl Inequality , 1984 .

[10]  M. Benedicks On Fourier transforms of functions supported on sets of finite Lebesgue measure , 1985 .

[11]  D. Donoho,et al.  Uncertainty principles and signal recovery , 1989 .

[12]  E. Lieb Integral bounds for radar ambiguity functions and Wigner distributions , 1990 .

[13]  V. Havin The Uncertainty Principle in Harmonic Analysis , 1994 .

[14]  K. Gröchenig An uncertainty principle related to the Poisson summation formula , 1996 .

[15]  G. Folland,et al.  The uncertainty principle: A mathematical survey , 1997 .

[16]  Philippe Jaming,et al.  Principe d'incertitude qualitatif et reconstruction de phase pour la transformée de Wigner , 1998 .

[17]  H. Feichtinger,et al.  A Banach space of test functions for Gabor analysis , 1998 .

[18]  A. Janssen Proof of a conjecture on the supports of Wigner distributions , 1998 .