Hardy's Theorem and the Short‐Time Fourier Transform of Schwartz Functions
暂无分享,去创建一个
[1] G. Hardy. A Theorem Concerning Fourier Transforms , 1933 .
[2] G. Björck. Linear partial differential operators and generalized distributions , 1966 .
[3] R. Howe. Quantum mechanics and partial differential equations , 1980 .
[4] A. Janssen. Gabor representation of generalized functions , 1981 .
[5] H. Triebel. Theory Of Function Spaces , 1983 .
[6] A. Janssen. Positivity properties of phase-plane distribution functions , 1984 .
[7] L. Corwin. Matrix coefficients of nilpotent lie groups , 1984 .
[8] W. Schempp. Radar ambiguity functions, the Heisenberg group, and holomorphic theta series , 1984 .
[9] M. Cowling,et al. Bandwidth Versus Time Concentration: The Heisenberg–Pauli–Weyl Inequality , 1984 .
[10] M. Benedicks. On Fourier transforms of functions supported on sets of finite Lebesgue measure , 1985 .
[11] D. Donoho,et al. Uncertainty principles and signal recovery , 1989 .
[12] E. Lieb. Integral bounds for radar ambiguity functions and Wigner distributions , 1990 .
[13] V. Havin. The Uncertainty Principle in Harmonic Analysis , 1994 .
[14] K. Gröchenig. An uncertainty principle related to the Poisson summation formula , 1996 .
[15] G. Folland,et al. The uncertainty principle: A mathematical survey , 1997 .
[16] Philippe Jaming,et al. Principe d'incertitude qualitatif et reconstruction de phase pour la transformée de Wigner , 1998 .
[17] H. Feichtinger,et al. A Banach space of test functions for Gabor analysis , 1998 .
[18] A. Janssen. Proof of a conjecture on the supports of Wigner distributions , 1998 .