On the dimension reduction of systems with feedback delay by act-and-wait control

[1]  W. Michiels,et al.  Control design for time-delay systems based on quasi-direct pole placement , 2010 .

[2]  Peter J Gawthrop,et al.  Visual control of stable and unstable loads: what is the feedback delay and extent of linear time‐invariant control? , 2009, The Journal of physiology.

[3]  Wim Michiels,et al.  Continuous pole placement for delay equations , 2002, Autom..

[4]  Dirk Roose,et al.  Limitations of a class of stabilization methods for delay systems , 2001, IEEE Trans. Autom. Control..

[5]  Peter J. Gawthrop,et al.  Intermittent model predictive control , 2007 .

[6]  Vincent D. Blondel,et al.  Open Problems in Mathematical Systems and Control Theory , 2011 .

[7]  G. Stépán,et al.  Act-and-wait control concept for discrete-time systems with feedback delay , 2007 .

[8]  Dimitri Breda,et al.  Computing the characteristic roots for delay differential equations , 2004 .

[9]  Sabine Mondié,et al.  Approximation of control laws with distributed delays: a necessary condition for stability , 2001, Kybernetika.

[10]  Rifat Sipahi,et al.  An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems , 2002, IEEE Trans. Autom. Control..

[11]  John G. Milton,et al.  Balancing with Vibration: A Prelude for “Drift and Act” Balance Control , 2009, PloS one.

[12]  T. Ohira,et al.  The time-delayed inverted pendulum: implications for human balance control. , 2009, Chaos.

[13]  On the Brockett stabilization problem , 2001 .

[14]  Gábor Stépán,et al.  Continuation of Bifurcations in Periodic Delay-Differential Equations Using Characteristic Matrices , 2006, SIAM J. Sci. Comput..

[15]  Gábor Stépán,et al.  On the higher-order semi-discretizations for periodic delayed systems , 2008 .

[16]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[17]  Günter Radons,et al.  Lyapunov Spectrum of Linear Delay Differential Equations with Time-Varying Delay , 2010 .

[18]  Yoshiyuki Asai,et al.  A Model of Postural Control in Quiet Standing: Robust Compensation of Delay-Induced Instability Using Intermittent Activation of Feedback Control , 2009, PloS one.

[19]  R. Brockett A stabilization problem , 1999 .

[20]  Gennady A. Leonov BROCKETT'S PROBLEM IN THE THEORY OF STABILITY OF LINEAR DIFFERENTIAL EQUATIONS , 2002 .

[21]  Bernhard P. Lampe,et al.  Characteristic equation and stability analysis of linear periodic systems with delay , 2010 .

[22]  Brian P. Mann,et al.  Stability of Delay Equations Written as State Space Models , 2010 .

[23]  Peter J. Gawthrop,et al.  Event-driven intermittent control , 2009, Int. J. Control.

[24]  Gábor Stépán,et al.  Stability chart for the delayed Mathieu equation , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  Wim Michiels,et al.  Finite spectrum assignment of unstable time-delay systems with a safe implementation , 2003, IEEE Trans. Autom. Control..

[26]  Toru Ohira,et al.  Balancing with positive feedback: the case for discontinuous control , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  P. Kabamba Control of Linear Systems Using Generalized Sampled-Data Hold Functions , 1987, 1987 American Control Conference.

[28]  Gábor Stépán,et al.  Stability of time-periodic and delayed systems - a route to act-and-wait control , 2006, Annu. Rev. Control..

[29]  Peter J. Gawthrop,et al.  Act-and-Wait and Intermittent Control: Some Comments , 2010, IEEE Transactions on Control Systems Technology.

[30]  Wolfram Just,et al.  On the eigenvalue spectrum for time-delayed Floquet problems , 2000 .

[31]  Alessandro Astolfi,et al.  A note on asymptotic stabilization of linear systems by periodic, piecewise constant, output feedback , 2004, Proceedings of the 2004 American Control Conference.

[32]  Kok Kiong Tan,et al.  Finite-Spectrum Assignment for Time-Delay Systems , 1998 .

[33]  A. Olbrot,et al.  Finite spectrum assignment problem for systems with delays , 1979 .

[34]  Peter J. Gawthrop,et al.  Predictive feedback in human simulated pendulum balancing , 2009, Biological Cybernetics.