Computing spectral properties of topological insulators without artificial truncation or supercell approximation

Topological insulators (TIs) are renowned for their remarkable electronic properties: quantised bulk Hall and edge conductivities, and robust edge wave-packet propagation, even in the presence of material defects and disorder. Computations of these physical properties generally rely on artificial periodicity (the supercell approximation), or unphysical boundary conditions (artificial truncation). In this work, we build on recently developed methods for computing spectral properties of infinite-dimensional operators. We apply these techniques to develop efficient and accurate computational tools for computing the physical properties of TIs. These tools completely avoid such artificial restrictions and allow one to probe the spectral properties of the infinitedimensional operator directly, even in the presence of material defects and disorder. Our methods permit computation of spectra, approximate eigenstates, spectral measures, spectral projections, transport properties, and conductances. Numerical examples are given for the Haldane model, and the techniques can be extended similarly to other TIs in two and three dimensions.

[1]  Cesar Palencia,et al.  A spectral order method for inverting sectorial Laplace transforms , 2005 .

[2]  J. Bellissard,et al.  A Kinetic Theory for Quantum Transport in Aperiodic Media , 1998 .

[3]  G. M. Graf,et al.  The Bulk-Edge Correspondence for Disordered Chiral Chains , 2018, Communications in Mathematical Physics.

[4]  Matthew J. Colbrook The Foundations of Infinite-Dimensional Spectral Computations , 2020 .

[5]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[6]  Matthew J. Colbrook,et al.  Can stable and accurate neural networks be computed? -- On the barriers of deep learning and Smale's 18th problem , 2021 .

[7]  C. McMullen Families of Rational Maps and Iterative Root-Finding Algorithms , 1987 .

[8]  Lloyd N. Trefethen,et al.  Parabolic and hyperbolic contours for computing the Bromwich integral , 2007, Math. Comput..

[9]  Lloyd N. Trefethen,et al.  New Quadrature Formulas from Conformal Maps , 2008, SIAM J. Numer. Anal..

[10]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[11]  J. Kellendonk,et al.  EDGE CURRENT CHANNELS AND CHERN NUMBERS IN THE INTEGER QUANTUM HALL EFFECT , 2002 .

[12]  V. Ehrlacher,et al.  Analysis of Boundary Conditions for Crystal Defect Atomistic Simulations , 2013, 1306.5334.

[13]  Albert H. Werner,et al.  Absolutely Continuous Edge Spectrum of Hall Insulators on the Lattice , 2021, Annales Henri Poincaré.

[14]  Sofiane Soussi,et al.  Convergence of the Supercell Method for Defect Modes Calculations in Photonic Crystals , 2005, SIAM J. Numer. Anal..

[15]  Guo Chuan Thiang,et al.  Topology in shallow-water waves: A spectral flow perspective , 2021 .

[16]  M. Porta,et al.  Bulk-Edge Correspondence for Two-Dimensional Topological Insulators , 2012, 1207.5989.

[17]  L. Thomas,et al.  Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators , 1973 .

[18]  Y. Zhu,et al.  Elliptic Operators with Honeycomb Symmetry: Dirac Points, Edge States and Applications to Photonic Graphene , 2017, Archive for Rational Mechanics and Analysis.

[19]  E B Davies,et al.  Spectral Pollution , 2002 .

[20]  Matthew J. Colbrook,et al.  Computing Spectral Measures and Spectral Types , 2019, Communications in Mathematical Physics.

[21]  Peter Kuchment,et al.  An overview of periodic elliptic operators , 2015, 1510.00971.

[22]  Lloyd N. Trefethen,et al.  The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..

[23]  Scattering of Magnetic Edge States , 2005, math-ph/0502026.

[24]  S. Smale The fundamental theorem of algebra and complexity theory , 1981 .

[25]  Matthew J. Colbrook,et al.  A contour method for time-fractional PDEs and an application to fractional viscoelastic beam equations , 2021, J. Comput. Phys..

[26]  Alex Townsend,et al.  FEAST for Differential Eigenvalue Problems , 2019, SIAM J. Numer. Anal..

[27]  Marco Marletta,et al.  Computing the Sound of the Sea in a Seashell , 2020, Foundations of Computational Mathematics.

[28]  Alexei Stepanenko,et al.  Computing eigenvalues of the Laplacian on rough domains , 2021, ArXiv.

[29]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[30]  A. Drouot Microlocal Analysis of the Bulk-Edge Correspondence , 2019, Communications in Mathematical Physics.

[31]  Marco Marletta,et al.  Universal algorithms for computing spectra of periodic operators , 2021 .

[32]  Alexei Kitaev,et al.  Periodic table for topological insulators and superconductors , 2009, 0901.2686.

[33]  M. Gilbert Topological electronics , 2021, Communications Physics.

[34]  Ivan P. Gavrilyuk,et al.  Exponentially Convergent Algorithms for Abstract Differential Equations , 2011 .

[35]  P. Delplace,et al.  Topological origin of equatorial waves , 2017, Science.

[36]  Simon Becker,et al.  Computing solutions of Schrödinger equations on unbounded domains- On the brink of numerical algorithms , 2020, ArXiv.

[37]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[38]  Israel Michael Sigal,et al.  Introduction to Spectral Theory , 1996 .

[39]  Ivan P. Gavrilyuk,et al.  Exponentially Convergent Parallel Discretization Methods for the First Order Evolution Equations , 2001 .

[40]  C. Fefferman,et al.  On the energy of a large atom , 1990 .

[41]  Steve Smale,et al.  Complexity theory and numerical analysis , 1997, Acta Numerica.

[42]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[43]  J. A. C. Weideman,et al.  Improved contour integral methods for parabolic PDEs , 2010 .

[44]  Alex Townsend,et al.  Continuous Analogues of Krylov Subspace Methods for Differential Operators , 2019, SIAM J. Numer. Anal..

[45]  A. Elgart,et al.  Equality of the Bulk and Edge Hall Conductances in a Mobility Gap , 2004, math-ph/0409017.

[46]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[47]  Benedict Dingfelder,et al.  An improved Talbot method for numerical Laplace transform inversion , 2013, Numerical Algorithms.

[48]  B. Halperin Quantized Hall conductance, current carrying edge states, and the existence of extended states in a two-dimensional disordered potential , 1982 .

[49]  C. McMullen Braiding of the attractor and the failure of iterative algorithms , 1988 .

[50]  Anders C. Hansen,et al.  On the Solvability Complexity Index, the n-pseudospectrum and approximations of spectra of operators , 2011 .

[51]  Matthew J. Colbrook,et al.  On the Solvability Complexity Index Hierarchy and Towers of Algorithms , 2015 .

[52]  Dongwoo Sheen,et al.  A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature , 2003 .

[53]  F. Cucker,et al.  ON THE COMPUTATION OF GEOMETRIC FEATURES OF SPECTRA OF LINEAR OPERATORS ON HILBERT SPACES , 2021 .

[54]  G. Panati,et al.  The Haldane model and its localization dichotomy. , 2019, 1909.03298.

[55]  Joel E Moore,et al.  The birth of topological insulators , 2010, Nature.

[56]  Charge deficiency, charge transport and comparison of dimensions , 1998, physics/9803014.

[57]  A. Ludwig,et al.  Classification of Topological Insulators and Superconductors , 2009, 0905.2029.

[58]  Y. Hatsugai,et al.  Chern number and edge states in the integer quantum Hall effect. , 1993, Physical review letters.

[59]  E. Prodan,et al.  Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics , 2015, 1510.08744.

[60]  Bulk Localised Transport States in Infinite and Finite Quasicrystals via Magnetic Aperiodicity , 2021, 2107.05635.

[61]  M. Marletta,et al.  Computing scattering resonances , 2020, Journal of the European Mathematical Society.

[62]  M. Webb Isospectral algorithms, Toeplitz matrices and orthogonal polynomials , 2017 .

[63]  Mathieu Lewin,et al.  Spectral pollution and how to avoid it , 2008, 0812.2153.

[64]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[65]  T. Hales The Kepler conjecture , 1998, math/9811078.

[66]  Jianfeng Lu,et al.  Computing Edge States without Hard Truncation , 2018, SIAM J. Sci. Comput..

[67]  Maureen T. Carroll Geometry , 2017, MAlkahtani Mathematics.

[68]  A. Klein,et al.  Dynamical delocalization in random Landau Hamiltonians , 2004, math-ph/0412070.

[69]  A. McCauley,et al.  Computation and visualization of photonic quasicrystal spectra via Bloch's theorem , 2007, 0711.2052.

[70]  Don Heiman,et al.  High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. , 2014, Nature materials.

[71]  Kang L. Wang,et al.  A Viewpoint on : Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field , 2015 .

[72]  Cobordism invariance of topological edge-following states , 2020, 2001.08339.

[73]  Zheng Wang,et al.  Observation of unidirectional backscattering-immune topological electromagnetic states , 2009, Nature.

[74]  C. McMullen,et al.  Solving the quintic by iteration , 1989 .

[75]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[76]  L. Chaput Berry Phases in Electronic Structure Theory. Electric Polarization, Orbital Magnetization and Topological Insulators. By David Vanderbilt. Cambridge University Press, 2018. Hardback, pp. x+384. Price GBP 59.99. ISBN 9781107157651. , 2019, Acta crystallographica. Section A, Foundations and advances.

[77]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[78]  M. Segev,et al.  Photonic Floquet topological insulators , 2012, Nature.

[79]  Christoph Ortner,et al.  Sharp Uniform Convergence Rate of the Supercell Approximation of a Crystalline Defect , 2018, SIAM J. Numer. Anal..

[80]  Matthew J. Colbrook Pseudoergodic operators and periodic boundary conditions , 2019, Math. Comput..

[81]  S. Huber,et al.  Observation of phononic helical edge states in a mechanical topological insulator , 2015, Science.

[82]  Tobias Nipkow,et al.  A FORMAL PROOF OF THE KEPLER CONJECTURE , 2015, Forum of Mathematics, Pi.

[83]  V. Thomée,et al.  Time discretization of an evolution equation via Laplace transforms , 2004 .

[84]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[85]  Q. Xue,et al.  Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator , 2013, Science.

[86]  G. M. Graf,et al.  On the Extended Nature of Edge States of Quantum Hall Hamiltonians , 1999, math-ph/9903014.

[87]  The foundations of spectral computations via the Solvability Complexity Index hierarchy: Part II , 2019, 1908.09598.

[88]  Matthew J. Colbrook Computing semigroups with error control , 2021, SIAM J. Numer. Anal..

[89]  A. Pokrzywa,et al.  Method of orthogonal projections and approximation of the spectrum of a bounded operator II , 1979 .

[90]  Matthew J. Colbrook,et al.  Computing spectral measures of self-adjoint operators , 2020, SIAM Rev..

[91]  Alexander Bastounis,et al.  The extended Smale's 9th problem -- On computational barriers and paradoxes in estimation, regularisation, computer-assisted proofs and learning , 2021 .

[92]  X. Dai,et al.  Introduction to Topological Insulators , 2015, 1509.06816.

[93]  B. Bernevig Topological Insulators and Topological Superconductors , 2013 .

[94]  G. V. Chester,et al.  Solid State Physics , 2000 .

[95]  Matthew J. Colbrook,et al.  How to Compute Spectra with Error Control. , 2019, Physical review letters.

[96]  S. Olver,et al.  Spectra of Jacobi Operators via Connection Coefficient Matrices , 2017, Communications in Mathematical Physics.

[97]  Charles Fefferman,et al.  Interval Arithmetic in Quantum Mechanics , 1996 .

[98]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[99]  Guillaume Bal,et al.  Edge state dynamics along curved interfaces , 2021, 2106.00729.