An exponential-type upper bound for Folkman numbers

For given integers k and r, the Folkman number f(k;r) is the smallest number of vertices in a graph G which contains no clique on k+1 vertices, yet for every partition of its edges into r parts, some part contains a clique of order k. The existence (finiteness) of Folkman numbers was established by Folkman (1970) for r=2 and by Nešetřil and Rödl (1976) for arbitrary r, but these proofs led to very weak upper bounds on f(k;r).Recently, Conlon and Gowers and independently the authors obtained a doubly exponential bound on f(k;2). Here, we establish a further improvement by showing an upper bound on f(k;r) which is exponential in a polynomial of k and r. This is comparable to the known lower bound 2Ω(rk). Our proof relies on a recent result of Saxton and Thomason (or, alternatively, on a recent result of Balogh, Morris, and Samotij) from which we deduce a quantitative version of Ramsey’s theorem in random graphs.

[1]  T. Skolem Ein kombinatorischer Satz mit Anwendung auf ein logisches Entscheidungsproblem , 1933 .

[2]  R. Graham On edgewise 2-colored graphs with monochromatic triangles and containing no complete hexagon , 1968 .

[3]  J. Folkman Graphs with Monochromatic Complete Subgraphs in Every Edge Coloring , 1970 .

[4]  P. Erdös Problems and Results on Finite and Infinite Graphs , 1975 .

[5]  V. Rödl,et al.  The Ramsey property for graphs with forbidden complete subgraphs , 1976 .

[6]  János Komlós,et al.  A Note on Ramsey Numbers , 1980, J. Comb. Theory, Ser. A.

[7]  V. Rödl,et al.  Threshold functions for Ramsey properties , 1995 .

[8]  Sebastian Urbanski Remarks on 15-vertex (3, 3)-Ramsey graphs not containing K5 , 1996, Discuss. Math. Graph Theory.

[9]  Vojtech Rödl,et al.  Ramsey Properties of Random Hypergraphs , 1998, J. Comb. Theory, Ser. A.

[10]  Stanislaw P. Radziszowski,et al.  Computation of the Folkman number Fe(3, 3; 5) , 1999, J. Graph Theory.

[11]  K. Piwakowski,et al.  Computation of the Folkman numberFe(3, 3; 5) , 1999 .

[12]  K. Piwakowski,et al.  Computation of the Folkman number F_e(3, 3; 5) , 1999 .

[13]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[14]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[15]  Vojtech Rödl,et al.  Ramsey Properties of Random k-Partite, k-Uniform Hypergraphs , 2007, SIAM J. Discret. Math..

[16]  S. Radziszowski,et al.  On the most wanted Folkman graph , 2007 .

[17]  Andrzej Dudek,et al.  On the Folkman Number f(2, 3, 4) , 2008, Exp. Math..

[18]  W. T. Gowers,et al.  Combinatorial theorems in sparse random sets , 2010, 1011.4310.

[19]  Vojtech Rödl,et al.  Ramsey properties of random discrete structures , 2010, Random Struct. Algorithms.

[20]  Andrzej Dudek,et al.  An almost quadratic bound on vertex Folkman numbers , 2010, J. Comb. Theory, Ser. B.

[21]  V. Rödl,et al.  Ramsey properties of random discrete structures , 2010 .

[22]  Andrzej Dudek,et al.  Some remarks on vertex Folkman numbers for hypergraphs , 2012, Discret. Math..

[23]  D. Saxton,et al.  Hypergraph containers , 2012, 1204.6595.

[24]  W. Samotij,et al.  Independent sets in hypergraphs , 2012, 1204.6530.

[25]  Angelika Steger,et al.  A Short Proof of the Random Ramsey Theorem , 2014, Combinatorics, Probability and Computing.

[26]  A. Frieze,et al.  Introduction to Random Graphs , 2016 .

[27]  Vojtech Rödl,et al.  Ramsey Properties of Random Graphs and Folkman Numbers , 2017, Discuss. Math. Graph Theory.