Optimizing SIFT for Matching of Short Wave Infrared and Visible Wavelength Images

The scale invariant feature transform (SIFT) is a widely used interest operator for supporting tasks such as 3D matching, 3D scene reconstruction, panorama stitching, image registration and motion tracking. Although SIFT is reported to be robust to disparate radiometric and geometric conditions in visible light imagery, using the default input parameters does not yield satisfactory results when matching imagery acquired at non-overlapping wavelengths. In this paper, optimization of the SIFT parameters for matching multi-wavelength image sets is documented. In order to integrate hyperspectral panoramic images with reference imagery and 3D data, corresponding points were required between visible light and short wave infrared images, each acquired from a slightly different position and with different resolutions and geometric projections. The default SIFT parameters resulted in too few points being found, requiring the influence of five key parameters on the number of matched points to be explored using statistical techniques. Results are discussed for two geological datasets. Using the SIFT operator with optimized parameters and an additional outlier elimination method, allowed between four and 22 times more homologous points to be found with improved image point distributions, than using the default parameter values recommended in the literature.

[1]  Angel Domingo Sappa,et al.  Multispectral Image Feature Points , 2012, Sensors.

[2]  Fred A. Kruse,et al.  Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry , 2011, International journal of remote sensing.

[3]  Piotr Ostiak Implementation of HDR panorama stitching algorithm , 2006 .

[4]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[5]  D. C. Howell Statistical Methods for Psychology , 1987 .

[6]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[7]  Diego Viejo,et al.  3D geological modelling using laser and hyperspectral data , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[8]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[9]  Josechu J. Guerrero,et al.  Photogrammetric Methodology for the Production of Geomorphologic Maps: Application to the Veleta Rock Glacier (Sierra Nevada, Granada, Spain) , 2009, Remote. Sens..

[10]  H. Maas,et al.  A geometric model for linear‐array‐based terrestrial panoramic cameras , 2006 .

[11]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[12]  Pierre Vandergheynst,et al.  FREAK: Fast Retina Keypoint , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Sharath Pankanti,et al.  Fingerprint verification using SIFT features , 2008, SPIE Defense + Commercial Sensing.

[14]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[15]  Vincent Lepetit,et al.  BRIEF: Binary Robust Independent Elementary Features , 2010, ECCV.

[16]  Javier Ortega-Garcia,et al.  Iris recognition based on SIFT features , 2004, 2009 First IEEE International Conference on Biometrics, Identity and Security (BIdS).

[17]  Kwanghoon Sohn,et al.  3D Scene Reconstruction System with Hand-Held Stereo Cameras , 2007, 2007 3DTV Conference.

[18]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[19]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[20]  Achim Roth,et al.  Registration of Near Real-time SAR Images by Image-to-Image Matching , 2007 .

[21]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[22]  Danilo Schneider,et al.  Semi-automatic Integration of Panoramic Hyperspectral Imagery with Photorealistic Lidar Models , 2012 .

[23]  Danilo Schneider,et al.  Terrestrial lidar and hyperspectral data fusion products for geological outcrop analysis , 2013, Comput. Geosci..

[24]  Z. Yi,et al.  Multi-spectral remote image registration based on SIFT , 2008 .

[25]  Geoff Wyvill,et al.  SIFT and SURF Performance Evaluation against Various Image Deformations on Benchmark Dataset , 2011, 2011 International Conference on Digital Image Computing: Techniques and Applications.

[26]  May Michael,et al.  Object Recognition from Infra Red image data for Mobile Platforms: Scale Invariant Feature Transform - A Graphical Parameter Analysis , 2010, BMVC 2010.

[27]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[28]  John Thurmond,et al.  Hyperspectral image analysis of different carbonate lithologies (limestone, karst and hydrothermal dolomites): the Pozalagua Quarry case study (Cantabria, North‐west Spain) , 2012 .

[29]  Ronald Lumia,et al.  Scale Invariant Feature Transform (SIFT) Parametric Optimization Using Taguchi Design of Experiments , 2010, ICIRA.

[30]  Danilo Schneider,et al.  Integration of panoramic hyperspectral imaging with terrestrial lidar data , 2011 .

[31]  Michael May,et al.  Data analytics and methods for improved feature selection and matching , 2012 .

[32]  Jean-Michel Morel,et al.  ASIFT: A New Framework for Fully Affine Invariant Image Comparison , 2009, SIAM J. Imaging Sci..

[33]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[34]  Francesca Odone,et al.  SVD-matching using SIFT features , 2006, Graph. Model..

[35]  Davide Marenchino,et al.  Performance Analysis of the SIFT Operator for Automatic Feature Extraction and Matching in Photogrammetric Applications , 2009, Sensors.

[36]  Boris Jutzi,et al.  FULLY AUTOMATIC IMAGE-BASED REGISTRATION OF UNORGANIZED TLS DATA , 2012 .

[37]  Y. Ogawa,et al.  Environmental mapping for mobile robot by tracking SIFT feature Points using trinocular vision , 2007, SICE Annual Conference 2007.

[38]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[39]  A. Schilling,et al.  AUTOMATIC FEATURE MATCHING BETWEEN DIGITAL IMAGES AND 2 D REPRESENTATIONS OF A 3 D LASER SCANNER POINT CLOUD , 2010 .